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Simulation of stellar atmospheres, such as that of our own sun, is a com-
mon task in CGI for scientiic visualization, movies and games. A ibrous
volumetric texture is a visually dominant feature of the solar coronaÐthe
plasma that extends from the solar surface into space. These coronal ibers
can be modeled as magnetic ilaments whose shape is governed by the
magnetohydrostatic equation. The magnetic ilaments provide a Lagrangian
curve representation and their initial coniguration can be prescribed by
an artist or generated from magnetic lux given as a scalar texture on the
sun’s surface. Subsequently, the shape of the ilaments is determined based
on a variational formulation. The output is a visual rendering of the whole
sun. We demonstrate the idelity of our method by comparing the resulting
renderings with actual images of our sun’s corona.
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1 INTRODUCTION

The desire to visualize astrophysical objects and phenomena is
intricately linkedwith the early history of computer graphics [Gómez
et al. 2017] and continues today with landmark visualizations of
the solar atmosphere [NASA Scientiic Visualization Studio 2018;
CADENS 2015; Borkiewicz et al. 2019]. In particular, the arcs visible
in our sun’s atmosphere are some of the most awe-inspiring natural
spectacles, making their visual depiction of great interest in scientiic
visualization, special efects, and games.

For a physically motivated algorithm, consider that stars like our
sun are surrounded by a corona. This is an atmosphere consisting
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Fig. 1. A procedurally generated solar atmosphere computed by our algo-
rithm. The underlying magnetic flux map was randomly generated and is
shown in the inset on this page.

of plasma, an ionized and electrically conducting gas that interacts
with a variable magnetic ield through the magnetohydrodynamic

(MHD) equations. Due to the large time scales involved, the visually
prominent phenomena are governed by the magnetohydrostatic

(MHS) equation [Rosner et al. 1978]

0 =
1
�0
(curlB) × B − grad� + �

�B�
�g. (1)

Here B is the magnetic ield, � the gas pressure, � the temper-
ature, �0 the vacuum permeability, �B the Boltzmann constant,
� the mass of a proton and g the gravita-
tional acceleration ield.

This equation has many possible solutions,
even for given lux boundary conditions. To
overcome this indeterminacy we select a
special class of solutions. Numerically, these
solutions can be described by a set of curves
which minimize a variational energy. In principle, these curves can
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be initialized arbitrarily, which means that geometric modeling tools
can be used for the design of stellar atmospheres.

If the magnetic lux is already given as a scalar texture on the sun’s
surface (inset irst page) initial curves can be chosen as geodesics
with respect to a particular conformal metric, while their start and
end points can be found through a linear assignment problem.

To summarize, we assemble a computational pipeline for procedu-
rally generating the visual appearance of our sun. Using Lagrangian
elements, the features of the solar atmosphere are reconstructed
at a high level of detail. An accompanying video and a complete
implementation of this research is available at https://page.math.tu-
berlin.de/~padilla/.

2 RELATED WORK

The visible ibers in the solar atmosphere follow ield lines of the
magnetic ield, mainly known through its lux on the solar surface.
Therefore, a problem extensively discussed in the solar physics
literature (see e.g. [Warren et al. 2018; Yeates et al. 2018]) is the
following:

Given a lux density on the surface of the sun, extend

it to a magnetic ield B in the solar atmosphere that,

for suitable choice of gas pressure � and temperature

distribution � , satisies the MHS equation.

Unfortunately, this problem is underdetermined and one has to
focus on special classes of solutions.
In special cases analytic solutions are known [Kippenhahn and

Schlüter 1957; Low 1982], for an overview see e.g. [Priest 2014,
Sec. 3.5]. In general, numerical approaches are needed.

2.1 Force-Free Fields

A special class of solutions is obtained if one assumes that gas
pressure is negligible. In this case the MHS equation (1) reduces to

(curlB) × B = 0. (2)

Divergence-free vector ields B satisfying (2) are called force-free.

2.1.1 Potential Fields. The easiest approach to force-free ields is
through the solution of a Neumann problem. Here one solves for a
harmonic vector ield, that is, a divergence-free ield B with

curlB = 0,

on the exterior of the sun with appropriate boundary conditions.
Looking for a ield on the whole sun exterior with prescribed lux
through the sun’s surface [Nabizadeh et al. 2021, Figs. 12, 13] gives
unrealistic results far away from the sun (compare Fig. 20, middle).
Better results are obtained if additional boundary conditions are
prescribed on an outer boundary at about 2.5 sun radii (compare
Fig. 20, left). This approach is known as the Potential Field Source
Surface model (PFSS) [Altschuler and Newkirk 1969; Sakurai 1982]
(see also [Priest 2014, Sec. 3.3]). PFSS ields are published on a daily
basis [NASA Solar Dynamics Observatory 2022].

2.1.2 Nonlinear Force-Free Fields. General solutions of Eq. (2) are
called Nonlinear Force-Free Fields (NLFFF). In order to specify such a
solution, in addition to the boundary lux, a ield topology has to
be prescribed. This allows for the handling of twisted or braided
ields (cf. Sec. 4.2.2). While numerical treatments commonly use

Eulerian methods [Titov et al. 2018; Grad and Rubin 1958; Inhester
and Wiegelmann 2006], DeForest and Kankelborg [2007] propose a
Lagrangian method which discretizes the volumetric ield into a set
of curves called luxons. Other methods such as the Aschwanden
Vertical-current Forward Fit (VCA) [2016] method employ additional
image data as constraints. For comparisons of NLFFF with other
methods see [Yeates et al. 2018; Warren et al. 2018]. To facilitate
further comparison we used some of the same data in our method
(Figs. 14, 17, 19, 20 and 21).

In order to compensate for missing gas pressure, NLFFF methods
have to use artiicial conining ields as in [Rachmeler et al. 2009].

Fig. 2. An artistically designed fluxmap (botom) and the corresponding solar
atmosphere (top). An animated version is provided in the supplementary
material.

2.2 Incorporating Hydraulic Efects

Numerical solutions of the full MHS equation (1), incorporating
hydraulic efects of the plasma and gravity, typically employ Eulerian
MHD relaxation methods [Chodura and Schlüter 1981; Parker 1994;
Janse et al. 2010]. One class of models which incorporates hydraulic
efects consists of the so-called Current-Sheet (CS) models (see e.g.
[Moradi et al. 2010]). In these, the magnetic ield is conined in a
domain bounded by a surfaceÐthe current sheet. Outside of this
domain, in the gas domain, the magnetic ield vanishes.
Our own method combines the force-free model with a current-

sheet model by assuming that inside of the magnetic domain the
ield is force-free. In this way, the efect of gas pressure is encoded in
the geometry of the magnetic domain. This allows us to describe the
ield in terms of a Lagrangian description by a collection of curves.

Like the NLFFF methods, we are able to handle twisted or braided
ield topologies and quasi-static dynamics (cf. Fig. 13), which both
are valuable features for CGI.

2.3 Lagrangian Curves for Fibered Volumes

At its core our approach is characterized by using Lagrangian curves
to model a ibered volume. While applied to solar atmospheres here,
such an approach is not new to computer graphics. It is also applied,
for example, in hair modeling [Hadap and Magnenat-Thalmann
2001], muscle modeling [Angles et al. 2019; Yu et al. 2021], or for
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vorticity in luids [Angelidis and Neyret 2005; Weißmann and Pinkall
2010; Padilla et al. 2019].

2.4 Glow Model and Rendering

For the purpose of rendering the solar atmosphere one needs to
know how the computed magnetic ield is related to emission (glow).
Methods for the volumetric rendering of the solar atmosphere have
been discussed in [Schrijver et al. 2005; Lionello et al. 2008; Machado
et al. 2012; Peter et al. 2012; Naiman et al. 2017]. The physics of
plasma glow is investigated in [Boerner et al. 2012; Zhuleku et al.
2020].

3 FORCE-FREE CURRENT-SHEET MODEL

As explained in Sec. 2.2 we consider a special CS model, referred to
as the Force-Free Current-Sheet (FFCS) model, where the magnetic
ield is assumed to be force-free. In this model the solar corona
(plasma domain) is decomposed into a gas domain, in which there is
only gas but no magnetic ield, and a lux domain, in which there is
magnetic ield but no gas.

3.1 Plasma Domain

LetM be the plasma domain andM0,MB ⊂ M be domains whose
interiors are disjoint while M = M0 ∪ MB. The plasma domain

❈
❈❖

❩
❩⑥

ΣB

MB

M0

�M

is thus partitioned into the gas domainM0 and
the lux domainMB. The state of the plasma is
given by the domain decomposition together
with the magnetic ield B.

3.2 Gas Domain

In the gas domain M0 we have |B| = 0 and
the only relevant quantity is the gas pressure
�gas : M0 → R>0, which satisies (1). Undermild topological assump-
tions �gas can be extended to a function � : M→ R>0 depending on
the height above the surface only (cf. App. A).

3.3 Flux Domain

The lux domain is a manifold with cornersÐwe allow for creases
on ΣB := �MB ∩ �M. Away from the creases the boundary �MB

is smooth. The lux domain is void of gas and the support of a
divergence-free vector ield B : MB → R3. This ield realizes the
prescribed boundary lux on ΣB and is tangent to the boundary �MB

elsewhere.

3.4 FFCS-Solutions of the MHS Equation

In App. B we prove

Theorem 1. A state of the plasma (MB,B) solves the MHS equation

(1) (in a distributional sense) if and only if B is force-free and satisies
|B |2/2�0 = �gas on �M0 ∩ �MB.

4 VARIATIONAL FORMULATION

We now turn to a variational formulation of the FFCS model.

4.1 Magnetohydrostatic Energy

Let � : M→ R>0 denote the extension of the gas pressure onM0 to a
function on the whole ofM (cf. App. A). For a domain decomposition

M = M0 ∪MB with corresponding magnetic ield B we deine the
energy:

E(MB,B) :=
∫
MB

(
� + |B |

2

2�0

)
. (3)

To see the physical meaning of this energy, imagine M initially
without any B and illed throughout with gas at pressure � . Growing
a vacuum-illed holeÐinitially of zero volumeÐwith shape MB

involves doing work against the pressure � . The total energy needed
for creating the hole will be

∫
MB

� . FillingMB with the magnetic

ield B adds further magnetic energy, the amount being
∫
MB
|B |2/2�0.

4.2 Variational Principle

As explained in App. C, it is natural to consider variations of B of
the form

B̊ = curl(� × B),

induced by a vector ield � onM.

Theorem 2. LetM = M0 ∪MB be a domain decomposition with

magnetic ield B and � be the outward-pointing normal of MB. Then

the energy variation corresponding to a vector ield � onM is given by

E̊ = −
∫
MB

⟨ 1�0 curlB × B, � ⟩

+
∫
�MB

((
� − |B |

2

�0

)
⟨�, � ⟩ + 1

�0
⟨B, � ⟩⟨B, � ⟩

)
.

Proof. See App. D. □

4.2.1 Fixed Boundary. Let us consider the case where only varia-
tions are allowed that leave the interior of the sun unchanged. This
amounts to variations which ix the boundary �M pointwise. In that
case a straightforward implication of Thm. 2 is:

Theorem 3. A domain decompositionM = M0 ∪MB together with

a magnetic ield B onMB is a critical point of (3) under variations
which ix the boundary �M pointwise if and only if it is force-free and

satisies

� = |B |2/2�0 (4)

on �M0 ∩ �MB.

In view of Thm. 1 this means that critical points satisfy the MHS
equation (1). In the caseM = MB, i.e. there is no gas, Thm. 3 amounts
to the Minimum Energy Theorem for Force-Free Fields (see e.g. [Priest
2014, Sec. 2.8]). Our setup is more general because it accounts for a
varying shape of the lux domain.

4.2.2 Fixed Boundary Flux. Allowing only vari-
ations that ix the boundary �M pointwise is
quite restrictive. It means that we not only pre-
scribe which points on the sun’s surface �M are
connected by magnetic ield lines but also the
way ield lines are braided and twisted [Prior
and Yeates 2016a,b]. This is often expressed by
saying that the topology of B is prescribed.
A less restrictive class of variations consists

of those difeomorphismsM→ Mwhose restrictions to �M preserve
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the intersections ΣB of the lux domain with �M and in addition
preserve the lux density

Φ(x) :=
{
⟨B(x), � ⟩ if x ∈ ΣB
0 if x ∈ �M \ �MB .

Using these more general variations the twisting and braiding of
ield lines can be undone to a large extent, making it possible to
lower the energy further. Under mild assumptions, the resulting
energy minimizers have a potential ield inside ofMB. In the case
M = MB, i.e. there is no gas, this follows from the Minimum Energy

Theorem for Potential Fields (see e.g. [Priest 2014, Sec. 2.8]).
To summarize: PFSS is contained in NLFFF as the special case

of untwisted ield lines. The FFCS model generalizes NLFFF to a
situation where the magnetic ield is conined by gas in a domain of
variable shape.

4.3 Energy in Terms of Field Lines

In Sec. 6 we will discretize our plasma coniguration (MB,B) as a
inite collection of ield lines of the magnetic ield B inside ofMB.
In preparation, we reformulate here the
magnetohydrostatic energy (3) as an integral
over the set of ield lines Γ.

Assuming that B is nowhere zero onMB, we
can use the arclength measure �� along the ield
lines to factor the volume element �� of R3 as

�� = �� · �� ,

where �� measures area orthogonal to the ield lines. Then

�� = |B|��

is the lux measure on the set Γ of all ield lines and we obtain

E(MB,B) =
∫
MB

(
�
|B | +

|B |
2�0

)
�� �� .

For an individual ield line � : [�, �] → MB we interpret

L (�) :=
∫ �

�

(
�
|B | +

|B |
2�0

)
◦ � ��

as the length of � with respect to a Riemannian metric

��̃ := �� �� :=




︃
2�
�0

�� in M0(
�
|B | +

|B |
2�0

)
�� in MB,

(5)

which is deined on the whole ofM by multiplying the Euclidean
metric �� by a conformal factor �� . Note that the conformal factor
is a continuous function if the magnetohydrostatic equilibrium (4)
holds. With this notation we can write

E(MB,B) =
∫
Γ

L (�) ��, (6)

where the integral denotes integration over the set Γ of all ield lines.

4.3.1 Pressure-Excess Factor. In (5), the conformal factor inMB is
the magnetic pressure exceeding the gas pressure. This is apparent
from (

�
|B | +

|B |
2�0

)
=

︃
2�
�0

(
1 + ( |B |−

√
2�0�)2

2 |B |√2�0�

)
. (7)

In particular, as the latter summand of the second factor is non-
negative, the conformal factor inMB is bounded from below by the
conformal factor inM0.

buoyancy

photosphere

corona

sunspot

magnetic lux tube

Fig. 3. Let: Below the sun’s surface, a strong magnetic field is structured
into a bundle of filaments by the convection flow. Right: Buoyancy makes
some of these fibers rise above the sun’s surface. This is the origin of the
fibered structure of the corona.

5 THIN FLUX TUBES

The visually prominent features in the solar atmosphere do not form
from processes in the corona itself. Instead, thin lux tubesÐlux
domains with cylindrical boundaryÐemerge from below the solar
surface (Fig. 3) (see also [Priest 2014, Sec. 9.3; Priest 2019, Sec. 3.2]).
The pressure in the interior of these lux tubes is lower than the
ambient pressure, raising the lux tubes above the solar surface due
to buoyancy.
While rising through the photosphere, the lux tube expands

due to decreasing ambient gas pressure. By App. C the magnetic
ield is transported by the same vector ield as the gas, hence the
amount of gas inside the tube remains unchanged. This leads to
further decreasing gas density inside the expanding lux tube leav-
ing the pressure there at only a small fraction of the ambient gas
pressure [Winebarger et al. 2008]. This is close to the assumptions
of the FFCS model.

5.1 Magnetic Filaments

Consider the situation where the whole lux tubeMB has the shape
of a thin tube with circular cross section around an arclength
parametrized curve � : [0, �] → M with � (0), � (�) ∈ �M. In this
case we refer to � as the soul curve ofMB.
To this shape we assign the unique divergence-free potential

ield onMB that is tangent to the boundary ofMB and realizes the
prescribed lux density onMB ∩ �M (Neumann problem).

In view of Sec. 4.2.2 this amounts to the assumption that we can
neglect twisting of ield lines inside the tube.

Because the tube is thinÐcompared to the curvature of � and the
rate of change in its thicknessÐwe can assume that on each cross
section the magnetic ield will be approximately orthogonal to the
cross section and have constant magnitude � : [0, �] → R. In this
situation, the total lux ℎ through the cross section at � (�) is given
by ℎ = �(�)�(�). Therefore the cross-sectional area � and hence
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the radius � of the tube is determined by �. We call the pair (�, �) a
magnetic ilament.
The energy of a magnetic ilament is deined by

E(�, �) := ℎ

∫ �

0

(
�
� +

�
2�0

)
�� ≈ E(MB,B) . (8)

Among all ilaments with a given soul curve the energy (8) is
minimized for a speciic choice of �:

Theorem 4. Let (�, �) be a magnetic ilament. Then under varia-

tions which leave the shape of the soul curve ixed, the energy (8) is
minimized for � =

√
2�0� .

Proof. First we note that the integrand is convex in �. Taking
the derivative with respect to � yields criticality if and only if
−�/�2 + 1/2�0 = 0. □

The choice � =

√
2�0� corresponds to an optimal radius

�gas =

︂
ℎ

�
√
2�0�
◦ � . (9)

The curve � is called unobstructed if the tube around � with radius
�gas is embedded without overlaps.

In this case the energy (8) simpliies to a length measured with
respect to a conformally changed metric:

E(�, �) = ℎ
︃

2
�0

∫ �

0

√
� �� =: ℎLgas (�) . (10)

In particular, themagnetohydrostatic energy (8) is critical for geodesics:

Theorem 5. Unobstructed magnetic ilaments follow geodesics with

respect to the conformally changed metric
2�
�0
⟨·, ·⟩.

Fig. 4. Unobstructed magnetic filaments follow shortest curves in a certain
metric (12). In our solar atmosphere the metric is given by (11) with � = 23.
Two points whose spherical distance exceeds 2�/(�−2) are connected by a
straight path going out to infinity and back.

5.2 Low Geodesics

In view of Thm. 5 we are interested in the geodesics of the metric
� ⟨·, ·⟩ for a speciic choice of pressure function � : M → R>0. In
this section we derive explicit formulas for these. In the limit of
ininite sun radius, these formulas were irst given by Low [1982].

5.2.1 Our Solar Atmosphere. Consider a star with radius �⊙ and
centered at the origin. For |x| ≥ �⊙ we assume a pressure function
of the form

� (x) = �0

(
|x |
�⊙

)−�
. (11)

This choice is in reasonable agreement with measurements [Gent
et al. 2013, Fig. 1] while allowing us to give an explicit description
for the geodesics of the conformally changed metric

��̃2 := � ��2 (12)

as used (up to a constant factor) in Eq. (10).

Theorem 6. Let ��̃2 := � ��2, � ∈ (0, �] and x, y ∈ �⊙S2 be two
points on the surface of the sun such that

x = �⊙
©­­«
− sin �

2
0

cos �
2

ª®®¬
, y = �⊙

©­­«
sin �

2
0

cos �
2

ª®®¬
.

Then the distance between x and y measured in ��̃ is

� (x, y) = √�0 · 2 sin
(
min{�, 2�

�−2 } ·
�−2
4

)
. (13)

Moreover, for � <
2�
�−2 the geodesic is given by the map

� : [−�2 ,
�
2 ] → M, � ↦→ �⊙

(
cos

(
�−2
2 �

)
cos

(
�−2
2

�
2

)
) 2
�−2 ©­«

sin �
0

cos �

ª®¬
. (14)

For � ≥ 2�
�−2 the length-minimizing geodesic with respect to ��̃ con-

necting x and y is given by the vertical line going out from x to ininity

followed by the vertical line coming in from ininity to y.

Proof. See App. E. □

The fact that a geodesic which connects points farther away from
one another than 2�/(�−2) always passes through ininity models
open ield linesÐa phenomenon which is also observed in nature.

� = 12 � = 8 � = 4

Fig. 5. The � parameter controls the maximal distance 2�/(�−2) between
points on the sun that can be connected by Low geodesics .

6 ENERGY MINIMIZATION

For the numerical treatment of the FFCS model, we discretize the
plasma state (MB,B) as a inite collection of magnetic ilaments.
These ilaments are given by a collection Γ of non-intersecting
curves: each � ∈ Γ is the soul curve of a magnetic ilament whose
tube radius at � (�) is given by

�� (�) = min{�gas (�), dist(� )2 }. (15)
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Here �gas is given by (9) and dist is the distance to the other curves.
The union of the magnetic ilaments is used as an approximation for

Fig. 6. A flux tube with non-circular cross-section discretized into magnetic
filaments, using three diferent resolutions.

the lux domainMB (cf. Fig. 6). As an approximation of the energy
E(MB,B) we take the sum of the energies (8) of the individual
ilaments:

E(Γ) =
︁
� ∈Γ

ℎ

∫ ��

0

(
�
��
+ ��

2�0

)
��. (16)

We interpret �� = ℎ/(�� 2� ) as evaluation of the underlying magnetic
ield strength |B| and (16) as a discretization of (6).
In view of Thm. 3 we want to approximate FFCS solutions by

minimizing (16).

high �0 moderate �0 low �0

Fig. 7. For the same flux map featuring two isolated sun spots of opposite
polarity, we show our computed plasma configurations for diferent values
of the pressure parameter �0.

6.1 Time-Spliting

The energy (16) is the total length with respect to the conformally
changed metric. This metric itself depends on the plasma state
approximated by the curve set Γ, and therefore on Γ.
We circumvent the coupled nature of the optimization problem

by introducing a time splitting:
First, given a curve coniguration, � and hence the conformal

factor (7) is computed. Then, assuming the conformal factor is ixed,
a gradient descent step is performed. The latter amounts to curve-

shortening low (cf. (16)). To ind a ixed point, these two steps are
alternated until convergence.
Fig. 8 depicts the evolution of the energy over time which is

typical for the examples in this paper. The energy minimization
progresses rapidly in the early stage of the relaxation and then
slowly approaches an equilibrium.

Algorithm 1 Energy Minimization

Input: Initial curve set Γ, pressure decay rate � > 0, base pressure
�0 > 0.

Output: Γ in relaxed state.
1: while not converged do

2: �, grad� ← ComputeMetric(Γ); ⊲ Sec. F.1.
3: Γ ← CurveShortening(Γ); ⊲ Sec. F.2.1.
4: end while

Iteration1 1000

E/
E 0

0.4

1

Fig. 8. The graph (right) depicts the energy E relative to the initial energy
E0 of the configuration as obtained by Alg. 1. The results were obtained for
the example of a single sunspot pair (let).

7 INITIAL CURVES FROM FLUX DENSITY

The energy minimization in Sec. 6 requires an initial set of curves
which prescribe the ield topology. These curves could be designed
by an artist or generated procedurally. In this section we describe a
method which only requires a lux density map.
First we discretize the lux density on the sun’s surface into a

inite collection of spots. A common approach is to use pairs of spots
with the same strength and opposite polarity [Sheeley et al. 1985;
Yeates 2020]. Here we stipple the lux density into many spots with
the same absolute lux ℎ. Afterwards we decide which pairs of spots
should be joined by a lux tube.

7.1 Stippling the Flux Density

We place entry and exit points of lux on the surface with a den-
sity proportional to the prescribed magnetic lux (Fig. 9). A lux-
quantization parameter ℎ > 0Ðthe strength of each ilamentÐgives
rise to 2� points S ⊂ �M ∩ �MB where

� =

[
1

2ℎ

∫
�M
|Φ|

]
,

and [·] indicates rounding. To assure lux-balance, S must be the
union of two disjoint sets R (red; positive lux), B (blue; negative
lux) of equal cardinality. Our implementation uses the stippling
method provided by SideFX Houdini.

7.2 Matching Stipples

Now we must match red and blue base points. In light of (10),
energy minimization amounts to minimizing the summed length of

ACM Trans. Graph., Vol. 41, No. 4, Article 153. Publication date: July 2022.
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Fig. 9. A stippling (right) of the flux density map from Oct. 21st, 2011 (let).

ilaments in a conformally changed metric. By Sec. 5.2 the distance
between matched points in this conformally changed metric depends
only on their spherical distance (Eq. (13)). Therefore, inding an
energy-minimizing matching of pointsM amounts to solving a
linear assignment problem. Points receive their optimal match within
a spherical distance of 2�/(�−2) or are matched to a virtual point at
ininity. Due to this fact, the assignment problem generally becomes
sparse and we can use the LAPJVsp algorithm [Jonker and Volgenant
1987] provided by SciPy.
Once the optimal matching has been found, initial curves are

constructed according to Eq. (14) (cf. Fig. 10, left).

Fig. 10. Let: A curve configuration initialized from the stippling in Fig. 9 of
the flux map of Oct. 21st, 2011. All filaments are vertical plane curves or
radial straight line segments. Right: The same configuration in a relaxed
state.

8 TWIST

The minimum-energy matching of stipples on the sun’s surface
by Low-geodesics (Sec. 7.2) results in an untwisted set of initial
ilaments. It is of course possible (e.g. under artist direction) to
start the relaxation with a diferent set of connecting ilaments. For
example, one can connect the stipples of a sunspot pair in a twisted
fashion (Fig. 11).
Instead of prescribing the twisted connecting curves explicitly,

one can also start with the untwisted connections, relax, rotate the
sun spots against each other by a small amount, relax again and so
on. This is called quasi-static evolution and is in fact the mechanism

Fig. 11. An artistically prescribed collection of initial filaments with 540◦

twist (let) and the corresponding energy minimizer (middle, right).

by which twisted solar loops evolve, see e.g. [Priest 2014, Sec. 1.9]
(Fig. 12).

Fig. 12. Twisted flux tubes (courtesy: Crimea Astrophysical Observatory,
let and TRACE Consortium, right).

Following the gradient low of an energy while ignoring inertia
efects is called viscosity dynamics. When used in connection with
boundary conditions or other parameters that change in time the
resulting dynamics is referred to as quasi-static viscosity evolution,
which has been used for modeling plastic elasticity and fracture
[Toader and Zanini 2009; Hahn and Wojtan 2015; Negri 2021]. In our
context this provides a simple technique for introducing dynamics
into simulations (Fig. 13).

Iteration1 6000

E/
E 0

0.4

2

Fig. 13. Time evolution and plot of energy (16) of a twisted curve configura-
tion over a single sunspot pair, obtained by moving the base points [Prior
and Yeates 2016a,b; Rachmeler et al. 2009]. This can be viewed as a model
for a coronal mass ejection: in the twisted state the energy is larger than in
the final erupted stateÐthe diference being the amount of energy ejected
into space.

ACM Trans. Graph., Vol. 41, No. 4, Article 153. Publication date: July 2022.
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9 RENDERING

In order to increase the visual level of detail we can subdivide
magnetic ilaments into several thinner subilaments. Since we
assume magnetic ilaments to be internally untwisted (Sec. 5.1), we
are able to guess the shapes of their individual subilaments.
This subdivision also allows us to model the visible glow by

taking into account the small amount of gas trapped between the
subilaments. The glow is determined by the temperature and density
of this gas.

Fig. 14. Glow of an active region from Apr. 19th, 2011 computed for �0 =
2 · 10−8 (let), �0 = 6 · 10−8 (middle) and �0 = 1 · 10−7 (right). The same
region was used in [Warren et al. 2018, Fig. 9] and the real footage is shown
in the last column of Fig. 17.

9.1 Filament Glow

Let � ↦→ � (�) be the soul curve of a magnetic ilament. In plasma,
heat transport is weak in directions orthogonal to magnetic ield
lines but strong parallel to B. For this reason and because magnetic
ilaments are thin (Sec. 5.1), we assume that the temperature of the
trapped gas is a constant �� throughout the whole ilament [Reale
2014; Reale and Peres 1999]. The pressure of this gas is still given by
(4) and the ideal gas equation � = ��/(�B� ) then gives us the density

� (�) = �� (� )2
2�0����

.

We determine �� by assuming that on the sun’s surface the density
is a given constant �0. If � is not open, we combine the resulting
temperatures at the two end points as

�� =
�

2�0���0
max{�(0)2, �(�)2}.

Solar loops are best seen in extreme ultraviolet and X-ray frequencies.
We therefore have to specify the amount of radiation emitted at
several wavelengths � .
In the context of a certain ixed density, the emissivity of solar

plasma was determined for various common wavelengths � as
temperature response functions �� [Boerner et al. 2012, Fig. 11]. Here
we need to know also the dependence of emission on density and we
found that the following expression leads to good results (Fig. 21):

em(�,� , �) = �� (� ) �1/3 .

10 VALIDATION

In this section we will separately validate various aspects of our
algorithm.

10.1 Validation of the Numerics

Consider the case without gas, i.e. � = 0. In simple situations like the
one shown in Fig. 15 the energy-minimizing matching described in
Sec. 7.2 will yield the same ield topology as the corresponding PFSS
ield. Fig. 15 demonstrates that the soul curves computed by our
algorithm are close to the ield lines of the PFSS ield. We take this
as validation for the claim that indeed our numerics approximately
yields a force-free ield in the interior of the lux domainMB.

Fig. 15. If the magnetic field is so strong that we can assume � = 0, the soul
curves of magnetic filaments (blue) computed by our method are close to
field lines (yellow) of a PFSS field.

By Thm. 1, the other property of FFCS solutions that has to be
veriied is that on the boundary of the lux regionM� the magnetic
ield strength |B| is determined by the ambient gas pressure. We
tested this in the case � = const > 0 by relaxing a pair of two
interlinked lux tori. The cross-sectional area of a ilament is in-
versely proportional to the magnetic ield strength inside, so on
the boundary �MB we expect ilaments to have constant thickness.
Indeed, Fig. 16 shows that our numerics produces ilaments for
which this is approximately the case.

Fig. 16. A pair of linked flux tori (let) relaxed within a constant ambient
gas pressure (middle, right).

10.2 Applicability of the FFCS Model

In regions within the solar atmosphere where the magnetic ield
is strong (like above strong sunspots) the FFCS model predicts a
force-free magnetic ield. In view of Sec. 4.2.2, in a situation where all
ield lines are untwistedÐas for initial curve conigurations obtained
from our optimal matching (Sec. 7.2)Ðwe expect a ield that is
approximately PFSS (Fig. 17).
However, if one also includes the regions with a weak magnetic

lux, the ield predicted by our model difers signiicantly from the
PFSS ield: The PFSS ield exhibits long ield lines connecting far
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PFSS

Footage

Ours

Fig. 17. PFSS field lines [Warren et al. 2018, Fig. 9] (top) compared to our
magnetic filaments (botom).

away points on the surface, while our algorithm produces shallow
short ilaments (Fig. 18). Since regions with weak magnetic ield are
less visible in footage, it is hard to verify our predictions visually.
However, there are indications that our predictions concerning
regions with weak ield are indeed realistic [Wiegelmann and Solanki
2004b,a].

Fig. 18. Magnetic field of Oct. 21st, 2011 computed by our method (let) and
PFSS (right), both visualized by magnetic filaments.

Fig. 19. The far magnetic field during the eclipse on Mar. 15th, 2015 recon-
structed by the NLF-OP model (let, from [Yeates et al. 2018, Fig. 7]), the
PFSS model (middle) and our model (right).

Also farther away from the sun our ield is quite diferent from
the corresponding PFSS ield. The far magnetic ield of the sun, as
reconstructed by various non-PFSS models, was compared in [Yeates

et al. 2018]. In Fig. 19 our ield is drawn in the same style, whereas
in Fig. 20 we use our glow model (Sec. 9.1) for rendering.

Fig. 20. The far magnetic field (middle, Image by Miroslav Druckmüller,
Shadia Habbal, Peter Aniol, Pavel Štarha) during the eclipse on Mar. 15th,
2015 reconstructed and rendered by our model (right) and the PFSS model
(let).

10.3 Validation of the Glow Model

Our glow model depends on a single parameter �0 whose efect is
illustrated in Fig. 14. Fig. 21 shows footage taken in two diferent
wavelength and the corresponding renderings.

Ours

Ours

Footage

Footage

Ours

Ours

Footage

Footage

Fig. 21. Comparisons of our output to images of [NASA Solar Dynamics
Observatory 2022] in extreme ultraviolet (171Å, yellow) and X-ray (94Å,
green). Let half: The region studied in [Williams et al. 2020]. Right half: An
active region on Jun. 19th, 2010 (compare [Warren et al. 2018, Fig. 8]).

Given a PFSS ield we turn it into a collection of magnetic ilaments
by tracing ield lines from a stippling. The radius of the ilaments
is given by Eq. (15) with �gas set to ininity (Fig. 18). For rendering
(Fig. 20 and Fig. 22, left) one can then apply our glow model.

As explained in Sec. 10.2, in regions with strong magnetic ield
(which are visually most prominent) the ield lines produced by
our model are close to the PFSS ield lines, resulting in remarkably
similar renderings (Fig. 22).

11 CHOOSING PARAMETERS

For the procedural generation of stars one mainly has to specify the
parameters � and �0. For our sun � = 23, �0 = 10−2Pa [Gent et al.
2013, Fig. 1]. For other stars, diferent choices might be appropriate
(Fig. 5, Fig. 7).

In addition, the parameter ℎ controls the quantization of lux
maps. It inluences level of detail (Fig. 6) and afects computational
performance.

ACM Trans. Graph., Vol. 41, No. 4, Article 153. Publication date: July 2022.
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Fig. 22. Real footage of the solar atmosphere on Oct. 21st, 2011 (middle)
compared to the output from our rendering method applied on the PFSS
model (let) and our algorithm (right) computed from the corresponding
frontal flux map (Sec. 10).

For the inal rendering we also need to prescribe the gas density
�0 inside of the lux ropes at their foot points (Sec. 9.1). For our
renderings we use a constant value ranging from 10−8 to 10−7.

12 PERFORMANCE AND LIMITATIONS

The computation time of our algorithm ranges depending on the
total number of vertices, which is inluenced by the lux quantization
parameter, the edge length ℓ of discrete curves and the height � at
which we clip open ield lines.

The resulting number of vertices and computation times when run
on a Ryzen 7 5800X CPU are displayed in Table 1. The parameters
(normalized by sun radii) we use are ℎ = 10−6, ℓ = 0.02, � = 0.5 and
100 iterations. For the close ups on Fig. 21 we increase the level of
detail by choosing ℎ = 5 · 10−7, ℓ = 0.01 and 300 iterations.

Table 1. Computation times and parameters for our algorithm. Initialization
refers to the combined computation time of stippling, matching and initial-
izing curves. The last column shows the computation time of the energy
minimization (Alg. 1).

Application Vertices Init. min E
Fig. 1 ≈69k 0.98s 2:04min
Fig. 2 ≈66k 2.86s 2:06min
Fig. 22 Ours ≈35k 2.1s 2:36min
Fig. 21 Left half ≈15k 0.073s 13.49s
Fig. 21 Right half ≈3k 0.082s 9.66s

To compute tube radii (cf. Eq. (15)) and the gradient of the loga-
rithmic conformal factor (Sec. F.1.2) at a given vertex we have to
ind its neighbors. This step accounts for the majority (≈ 90%) of our
computation time in Alg. 1. Introducing parallelization, for example
through the use of GPU-based neighborhood search [Garcia et al.
2008; Gross et al. 2019] could therefore signiicantly reduce the
overall runtime.

The typical computation times for PFSS ields using pfsspy [Stansby
et al. 2020] and diferent magnetogram resolutions are shown in
Table 2. Each computation requires a full curvilinear grid around
the sun and a radial source surface outer boundary at which the
ield becomes radial. Here, we set the shell at 2.5 sun radii.

As explained in Sec. 10.3, for renderings based on our glow model,
the visible detail is transferred from a magnetogram (possibly with
high resolution) on the surface to ield lines. Therefore, for rendering

Table 2. Computation times for the PFSS field (pfsspy [Stansby et al. 2020])
using data for Oct. 21, 2011 (Fig. 22) with diferent grid resolutions.

pfsspy resolution Time
720 × 288 × 50 8.53s
1440 × 576 × 50 58.51s
2160 × 864 × 50 2:16min

the full sun (Fig. 22), even a coarse pfsspy resolution would be sui-
cient, resulting in a considerably faster computation time compared
to ours. For rendering detailed close-ups (Fig. 21), our method is
competitive even with regards to computation time (Table 1).

The convergence of our energy minimization (Alg. 1) slows down
as we approach a minimum (Fig. 8). It may be possible to avoid this
with the use of numerical acceleration techniques [Peng et al. 2018].

For our renderings we use Houdini’s Mantra renderer. We upsam-
ple each lux tube into 50 subilaments (Sec. 9) which are rendered
as transparent curves with an emission shader according to our
glow model (Sec. 9.1). The sun surface and fog are subsequently
added as composite layers. The total emission per pixel creates a
grayscale image, which is then tone-mapped. Rendering time of the
glow model depends on the curve details. For all images (1080p) of
full suns in our paper it took less than one minute.

While the lux data on the sun’s surface varies slowly over time,
video footage of the sun shows local changes of ilament brightness.
These brightness changes are not part of our emission model. In our
videos, we include this efect by using animated brightness noise,
multiplying all points of a given ilament by the same factor.

13 OUTLOOK

In our glow model, we treat the density �0 (Sec. 9.1) as a global
constant which can be adapted for each rendering. A method for
generating �0 locally from the magnetic ield on the surface would
be valuable and could improve the idelity in comparisons with real
imagery. We leave this to future work.
Given that our model is based on MHS no dynamic efects are

included as of yet. Flow on the sun surface could in principle be
accounted for (Fig. 13, Sec. 8). Modeling more general changes of the
magnetogramwould require a time coherent stippling method [Schri-
jver and DeRosa 2003]. More reined dynamical models would have
to include phenomena such as reconnection of magnetic ilaments.
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NOTATIONS

Notation Meaning

M Exterior of the sun

�M Sun surface

M0 Gas domain

MB Flux domain

ΣB Flux regions on the sun surface

B Magnetic ield

�B Boltzmann constant

�0 Permeability of the vacuum

� Mass of the proton

� Pressure

� Density

�⊙ Radius of the sun

� Temperature

� Logarithmic conformal factor

ℎ Flux quantization parameter

� Pressure decay rate

�� Euclidean length element

��̃ Conformally changed length element

Φ Flux density

S Stippling of the lux density Φ

R Red stipples for positive lux

B Blue stipples for negative lux

M Matching of stipples

A EXTENSION OF THE PRESSURE FUNCTION

Theorem 7. With the sun of radius �⊙ and centered at the origin,

suppose that {x ∈ M0 | |x| = � } is connected for all � ≥ �⊙ . Then, for
a function � : [�⊙,∞) → R>0, the gas pressure �gas is of the form

�gas = � |M0
,

where � : M→ R>0 with � (x) = � ( |x|).

Proof. Since the force of gravity is radial, by Eq. (1) grad�gas
is as well. Hence the level sets of � lie on concentric spheres. The
extension is then obtained by extending these level sets to the whole
of the concentric spheres. □

B PROOF OF THM. 1

To prove the claim we express B and �gas as the limit of a smooth

magnetic ield B̃ and a smooth gas pressure �̃ . Therefore, let � > 0

be small and let M�
0 denote the �-neighborhood of M0. Now, let

�B, �0 : M→ [0, 1] be smooth functions such that

�B |MB\M�
0
= 1, �B |M0

= 0, �0 |M0
= 1, �0 |MB\M�

0
= 0

and deine

B̃ = �BB, �̃ = �0�,

where � is the extension of the gas pressure function in Thm. 7. In
particular, we have

curl B̃ = �B curl B + grad�B × B

and

(curl B̃) × B̃ = �2B curl B × B +
1
2 (grad�

2
B × B) × B

= �2B curl B × B +
1
2 (B⟨grad�

2
B,B⟩ − grad�

2
B |B|

2) .

Now, let � be a vector ield compactly supported away from the
boundary �M. Then, for � → 0, we get, using Stokes’ Theorem∫

M

⟨(curl B̃) × B̃, � ⟩ −
∫
MB

⟨(curl B) × B, � ⟩

=
1
2

∫
M

⟨grad�2B, ⟨B, � ⟩B − |B|
2� ⟩ + � (1)

= − 1
2

∫
MB

div(⟨B, � ⟩B − |B|2� ⟩) + � (1)

=
1
2

∫
�MB

|B|2⟨�, � ⟩ + � (1).

Here in the last equation we used that the normal unit vector � of
�MB and B are perpendicular, � ⊥ B|�MB

. Similarly,∫
M

⟨grad �̃, � ⟩ =
∫
M

⟨� grad�0 + �0 grad�,� ⟩

=

∫
M

⟨grad�0, �� ⟩ +
∫
M0

⟨grad �,� ⟩ + � (1)

= −
∫
M0

div(�gas� ) +
∫
M0

⟨grad�gas, � ⟩ + � (1)

=

∫
�MB

�gas⟨�, � ⟩ +
∫
M0

⟨grad�gas, � ⟩ + � (1) .

Altogether, this shows that∫
M

⟨ 1�0 (curl B̃) × B̃ − grad �̃ +
�
���

�̃g, � ⟩

=
1
�0

∫
MB

⟨(curl B) × B, � ⟩ +
∫
M0

⟨ �
���

�gasg − grad�gas, � ⟩

+
∫
�MB

( |B |
2

2�0
− �gas)⟨�, � ⟩ + � (1),

which tends to zero for arbitrary � if and only if (curl B) × B = 0,

i.e. B is force-free, onMB and |B |
2

2�0
= �gas on �MB ∩ �M0.

C THE MAGNETIC FIELD IS FROZEN IN THE GAS

LetM be a domain illed by plasma moving under the inluence of
arbitrary forces. The motion of the gas can be described by a family
of difeomorphisms � ↦→ �� : M → M, � ∈ (−�, �) with �0 = idM
and velocity ield v =

�
��

��
�=0 �� = �̊ . Then one of the equations of

Magnetohydrodynamics says

�̊ = curl(v × B) .

In terms of �� = ���
det, which satisies ��� = 0, this equation can be

written as

�̊ = −Lv � = −� (�v�) − �v (��) = −� (�v�B det) = �curl(B×v)det,
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where we use Cartan’s magic formula. This implies

�� = (�−1� )∗�0 .
If we visualize a magnetic ield as a collection of ield lines whose
density indicates the ield strength, this means that we only have to
apply the difeomorphisms �� to these ield lines. We conclude: the
only variations of a plasma state (MB,B) compatible with the laws of
magnetohydrodynamics are those that come from difeomorphisms
ofM.

B

��

B�

Fig. 23. A magnetic field is transported by transporting its field lines.

D PROOF OF THM. 2

The change in the pressure contribution to the energy is given by

�

��

����
�=0

∫
MB

�∗� � =

∫
MB

L��

=

∫
MB

⟨grad�,� ⟩ +
∫
MB

� div(� )

=

∫
MB

div(�� )

=

∫
�MB

� ⟨�, � ⟩,

where we used Cartan’s magic formula, integration by parts and the
Divergence theorem.

The time derivative of the magnetic energy is calculated similarly,
but we have to keep in mind that instead of the time-independent
integrand � det we now are dealing with a time-dependent integrand
|B |2
2�0

det and by Reynolds transport theorem [Reddiger and Poirier

2020] we get an additional term:

�

��

����
�=0

∫
MB

�∗�
(
|B |2
2�0

)
=

∫
MB

1
�0
⟨B̊,B⟩ +

∫
�MB

|B |2
2�0
⟨�, � ⟩.

For the irst summand we compute∫
MB

1
�0
⟨B̊,B⟩ =

∫
MB

1
�0
⟨curl(� × B),B⟩

=

∫
MB

1
�0
⟨� × B, curlB⟩

−
∫
MB

1
�0

div( |B|2� − ⟨B, � ⟩B)

= −
∫
MB

⟨ 1�0 curlB × B, � )⟩

−
∫
�MB

(
|B |2
�0
⟨�, � ⟩ − 1

�0
⟨B, � ⟩⟨B, � ⟩

)

Putting everything together we obtain

E̊ = −
∫
MB

⟨ 1�0 curlB × B, � ⟩

+
∫
�MB

((
� − |B� |2

2�0

)
⟨�, � ⟩ + 1

�0
⟨B, � ⟩⟨B, � ⟩

)
.

Note that the latter summand of the boundary integral vanishes for
variations which ix the boundary ΣB.

E PROOF OF THM. 6

For symmetry reasons, the geodesic in question has to lie in the
��-plane. DenotingM�,� := M ∩ span{�� , �� } and introducing polar
coordinates (�, �) onM�,� we can use the transformation

� : M�,� → R2, �
©­­
«
sin�

0

cos�

ª®®
¬
↦→

(
�
�⊙

)− �−2
2 ©­

«
sin

(
�−2
2 �

)
cos

(
�−2
2 �

)ª®
¬

(17)

in order to mapM�,� onto the interior of the unit disk in R2. From

|� � |2 = |� − 2|
2

2�0��−2⊙
�0�
−� (��2 + �2��2) = |� − 2|

2

2�0��−2⊙
�0�
−� |�� |2

we see that the pullback under � of the Euclidean metric on the
unit disk is a constant multiple of our conformally changed metric
�0 (�/�⊙)−���2 and therefore the image of a geodesic under � is a
geodesic in the unit disk, i.e. a straight line segment (cf. Fig. 24). The
map � takes the points x and y to

x̃ =

©­
«
− sin

(
�−2
2

�
2

)
cos

(
�−2
2

�
2

) ª®
¬

and ỹ =

©­
«
sin

(
�−2
2

�
2

)
cos

(
�−2
2

�
2

)ª®
¬
.

The straight line segment connecting x̃ to ỹ can be parametrized by

�

Fig. 24. The map � from Eq. (17) which maps geodesics contained in a plane
on the sun’s exterior to geodesics in a multiple cover of the unit disc in R2.

[−�2 ,
�
2 ] → R

2, � ↦→
cos

(
�−2
2

�
2

)
cos

(
�−2
2 �

) ©­«
sin

(
�−2
2 �

)
cos

(
�−2
2 �

)ª®¬
.
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If � <
2�
�−2 , the geodesic we are looking

for is obtained from this straight line seg-
ment by applying the inverse of the map
� . For � ≥ 2�

�−2 we have to consider that
the map � multiplies angles by a factor

of �−2
2 > 1, so the conformally changed

metric on the intersection of the exterior
of the sun with the ��-plane has a cone point at ininity. Away from
the cone singularity, the metric is lat. However, as it is familiar from
triangle meshes, there is negative curvature concentrated in the
cone point and as a consequence, many length-minimizing geodesics
are forced to pass through the cone point.

F IMPLEMENTATION

We have implemented our proposed algorithm in SideFX Houdini
and the code is available in the supplementary material. For stippling
and matching we take advantage of readily available software. Only
the minimization of the variational energy (16) requires custom code
(Alg. 1).

For the implementation we have to move away from the smooth
theory and deal with a coniguration of discrete curves. A discrete

curve is a map � : {0, . . . , �} → R3 and we denote the position of
vertex � by �� .

F.1 Logarithmic Conformal Factor and its Gradient

For our purposes we need the logarithmic conformal factor � and its
gradient at the vertex positions of the discrete curve � (cf. Alg. 1
Step 2). Inside the lux domainMB, from the factorization introduced
in (7), we can write(

�
� +

�
2�0

)
=

︃
2�
�0

(
1 + (�−

√
2�0�)2

2�
√
2�0�

)
=: ��0��ex .

Here�0 and�ex are the logarithmic conformal factors corresponding
to the gas pressure and the pressure-excess factor respectively.
Therefore, the logarithmic conformal factor � is of the form

� = �0 + �ex
and consequently

grad� = grad�0 + grad�ex . (18)

F.1.1 Determining the Logarithmic Conformal Factor. We assume
the pressure � to be a given function, so that �0 is known. In the
case of (11) we have

�0 (x) = −�2 log( |x|) + log(
︃

2�0
�0
) . (19)

Moreover, at a vertex �� , we have the cross-sectional area �� from
(15). Hence, from ℎ = ���� and (11), we can compute

(�ex)� = log
©­«
1 +

(
��−
√
2�0� (�� )

)2
2��

√
2�0� (�� )

ª®¬
. (20)

F.1.2 Gradient Computation. With (19) we compute the irst sum-
mand of (18) as

(grad�0) (x) = −�2
x
|x |2 .

We approximate (grad �ex)� from samples, employing a inite difer-
ence scheme, evaluating it on the curves only

(grad�ex)� ≈ 1
|N (�� ) |

︁
� � ∈N(�� )

(
(�ex) � − (�ex)�

) � �−��
|� �−�� |2 .

Here N(�� ) is a set of neighboring vertices of �� which we use for
sampling, including vertices coming from virtual ilaments that ill
the gas domain with ield strength as in Thm. 4.

F.2 Discrete Curve Shortening

For curve shortening we need the gradient of the conformal length
(8).

Let � : R3 → R be a logarithmic conformal factor. The discrete
conformal distance between two points x, y ∈ R3 is given by

�� (x, y) := �
� (x)+� (y)

2 |x − y|
approximates the geodesic distance as |x − y| → 0.

The discrete analog of the conformal length (8) for � is

L (�) =
�−1︁

�=0

�� (�� , ��+1). (21)

Consequently, the gradient of (21) with respect to the Euclidean
metric at position �� can be computed as

(gradL )� = 1
2 (�� (��−1, �� ) + �� (�� , ��+1)) (grad�) (�� )

+ �
� (��−1 )+� (�� )

2
��−��−1
|��−��−1 | (22)

− �
� (�� )+� (��+1 )

2
��+1−��
|��+1−�� | .

Here grad� : R3 → R
3 is the gradient of � with respect to the

Euclidean metric.
From (22) we now develop a inite-diference scheme to minimize

the length L .

F.2.1 Curve-Shortening Step. In order to perform the curve-shortening
we found updates relying on a quasi-Newton step to work best for
our purposes: Denoting the �-th iterate of �� by ��� , we use

��+1� = �+���+1 +�−�
�
�−1 − 1

2

(
�−ℓ2− +�+ℓ2+

)
(grad�) (��� ), (23)

where ℓ− := |��� − �
�
�−1 |, ℓ+ := |�

�
�+1 − �

�
� | and

�− := ℓ+�
� (��

�−1 )

ℓ+�
� (��

�−1 )+ℓ−�� (�
�
�+1 )

, �+ :=
ℓ−�

� (��
�+1 )

ℓ+�
� (��

�−1 )+ℓ−�� (�
�
�+1 )

.

F.2.2 Controlling Topology. Although the topology of the resulting
ield B is initially ixed by the matching (cf. Sec. 7.2) of the red
and blue points and the choice of geodesics for the connections
(cf. Sec. 5.2), large update steps may lead to ield lines crossing. To
prevent this we bound the magnitude of updates by the tube radius.
Moreover, we cut of ield lines reaching beyond a threshold distance
from the sun’s surface. For the updates (23) of the resulting end
points of the open ield lines we use linear extrapolation.
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