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We introduce variable thickness, viscous vortex filaments. These can model

such varied phenomena as underwater bubble rings or the intricate “chan-

deliers” formed by ink dropping into fluid. Treating the evolution of such

filaments as an instance of Newtonian dynamics on a Riemannian con-

figuration manifold we are able to extend classical work in the dynamics

of vortex filaments through inclusion of viscous drag forces. The latter

must be accounted for in low Reynolds number flows where they lead to

significant variations in filament thickness and form an essential part of the

observed dynamics. We develop and document both the underlying theory

and associated practical numerical algorithms.
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1 INTRODUCTION
The study of vortex dynamics is by now a classical subject in fluid dy-

namics [Saffman 1992] with roots all the way back to Cauchy [1815]

(see [Frisch and Villone 2014] for an historical account). One of the

central elements in this study is the vortex filament, first articulated

by Helmholtz [1858] (see [Meleshko et al. 2012] for an historical

account). A vortex filament is a closed curve (or beginning and end-

ing on the boundary of the domain) carrying concentrated vorticity,

generating a velocity field according to the Biot–Savart law [1820].

Vortex filaments are easily accessible through experiment [Rogers

1858], serve as useful abstractions in the analysis of flows [Shariff

and Leonard 1992], and can serve as a basis for Lagrangian flow

simulations in the high Reynolds number regime in computational

fluid dynamics and computer graphics [Chorin 1990, 1993; Angelidis

and Neyret 2005; Bernard 2006, 2009; Weißmann and Pinkall 2010;

Liao et al. 2018] (to name but a few).

Comparatively less is known about the evolution of vortex fila-

ments in low to moderate Reynolds number flows, where they can
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Fig. 1. Evolution of two underwater bubble rings connecting, showing frames
from a video (left) and our simulation (right) with approximate ring size 2 m

and circulation 2.5 m
2

s
−1. See also the video at time 1:12.

model beautiful phenomena as diverse as bubble rings [Turner 1957;

Pedley 1968] (Figs. 1, 3) and the chandeliers formed by ink dropping

into clear fluid [Tomlinson 1864; Thomson and Newall 1886] (Figs. 2,

4). In these settings viscous drag and buoyancy affect thickness

variations along the filament. These have significant impact on the

dynamics of the filament as a whole and must be modeled explicitly.

To capture these dynamics we develop a model for variable thick-

ness vortex filaments subject to viscous drag and buoyancy. The

dynamics without drag and buoyancy coincide with classic descrip-

tions [Moore and Saffman 1972] according to the Biot–Savart [1820]

and Bernoulli [1738] laws. To account for the effect of dissipative

drag we first recast the classic evolution equations as geodesic equa-

tions on a suitably constructed configuration manifold [Kaluza 1921;

Klein 1926]. Dissipative drag can then be included in a standard

manner (as can other external forces such as buoyancy). This re-

sults in three coupled equations describing the deformation of the

center curve of the filament (Eq. (18)), changes in the thickness

along the filament (Eq. (15)), and changes in the circulation, i.e.,
filament strength (Eq. (12b)), as functions of time. Using appropriate

numerical methods, which we detail, we demonstrate the fidelity of

our model through simulations and comparisons with experiments.
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Fig. 2. Dynamic evolution of an ink drop showing Fig. 8 from [Thomson and
Newall 1886] (left) and stills from a simulation (right), rendered with toon
shading (cf. Fig. 4, right column). See also the video at 2:17.

1.1 Related Work
Much of the visual complexity of fluids arises from the distinction

between different phases/materials: the interface between water

and air, the flow of smoke in air, or the settling of particles in a

suspension (to name but a few). Not surprisingly many different

methods to capture phenomena of this type have been published

in the computer graphics literature (see [Ren et al. 2018] for a

recent, comprehensive review). None of these methods though

model the vortex filament structures which describe the evolution

of ink falling in water or a bubble ring rising under water. The

former being an example of negative buoyancy in a low Reynolds

number fluid, while the latter is one of positive buoyancy in a

moderate Reynolds number fluid. In the fluid dynamics literature

though there is considerable research devoted to these phenomena.

Already in the late 19
th
century Tomlinson [1864] and Thomson

and Newall [1886] described the intricate chandeliers formed by

ink drops falling in a fluid. In particular they noted that the drops

quickly form vortex filaments entraining the ink. These filaments

subsequently develop uneven thickness due to the low Reynolds

number nature of the flow. This leads to nucleation of the arms of

the chandelier (Figs. 2, 4). Detailed study of their evolution is still

the subject of ongoing work in both direct numerical simulation

(Navier-Stokes on an Eulerian grid) and experiment [Shimokawa

et al. 2016] (and references therein). But hitherto no explicit variable

thickness vortex filament subject to dissipative drag and negative

buoyancy has been developed, not withstanding the long history of

increasingly refined vortex filament models [Widnall and Bliss 1971;

Moore and Saffman 1972; Lundgren and Ashurst 1989; Marshall

1991], to name but a few.

Bubble rings are another example of buoyant vortex filaments,

this time with positive buoyancy due to the air they contain and

moving in a moderate Reynolds number environment. Research on

bubble rings in the fluid dynamics literature goes back to the middle

of the 20
th
century [Turner 1957; Pedley 1968] with theoretical devel-

opment of detailed physical models and their analysis continuing to

this day [Chang and Smith 2018] (and references therein). Similarly,

the investigation of their behavior with direct numerical simulation

(using boundary integral or lattice Boltzmann methods) [Lundgren

and Mansour 1991; Cheng et al. 2013] is ongoing. Boundary integral

methods have also been used in the computer graphics community

for fluid phenomena fully characterized by the evolution of their

bounding surface [Da et al. 2016], and could possibly be extended

to model bubble rings. These surface methods are generalizations

of vortex sheet approaches which have proven themselves useful

at larger scales [Stock et al. 2008; Brochu et al. 2012; Pfaff et al.

2012; Da et al. 2015]. Since filaments are 1-dimensional structures

they are more parsimonious for the task at hand yet no explicit

mathematical model for the evolving geometry of a bubble ring

as the variable thickness vortex filament it is, has hitherto been

developed. 1-dimensional Lagrangian descriptions have also proven

advantageous for viscous threads [Bergou et al. 2010]. There a highly

viscous fluid fills the inside of a variable thickness filament while

the physics are dominated by elastic forces rather than vorticity.

Fig. 3. Two bubble rings connecting with subsequent waves traveling along
the single ring so violently that they cause a subsequent reconnection
separating off a small bubble ring. Shown on the left are frames from a video,
while the right shows frames from a simulation. The ring is approximately
2 m in diameter and 5.0 m

2
s
−1 in circulation. See also the video at 1:37.

1.2 Our Approach
In this paper we develop a variable thickness, vortex filament, a

descriptor we shorten to filament for the remainder of the paper. It

will be subject to dissipative drag in a low to moderate (≈ 1 − 500)

Reynolds number regime and driven by buoyancy (and possibly

other forces).

We use filaments as primitives since they directly capture the

geometry of the dominant phenomenon. The underlying assump-

tion is that the filament is thin relative to its overall scale and its

curvature radius larger than its thickness. Due to the small scale
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Fig. 4. A Thomson chandelier comparing video frames of an experiment
(left) and a simulation (right), rendered with volume rendering (cf. Fig. 2,
right column). The ring is approximately 1 cm in diameter. See also the video
at 2:32.

of the filament thickness relative to the volume in which it moves,

we assume the flow in the interior of the filament to be Stokes, i.e.,
advective inertial forces are small compared with viscous forces.

On the outside the flow is modeled as irrotational, i.e., we assume

that the filament is embedded in a large flow field with negligible

boundary (shear) effects. Finally the fluid is assumed to be of uni-

form density and viscosity. When the density varies significantly we

employ a Boussinesq approximation, i.e., density differences appear

only in terms involving gravity.

To derive the evolution laws for such a filament we first recall

the Newtonian dynamics description of an evolving incompressible

fluid with dissipation (the Navier-Stokes equations). In that point

of view the configuration manifold of the fluid is given by the

volume preserving diffeomorphisms [Arnold and Khesin 1998] and

an Euler fluid evolves as a geodesic. For vortex sheets a formulation

as geodesics on a suitable configuration manifold can be found

in [Loeschke 2012] as well as [Izosimov and Khesin 2018]. Our task

is to develop this machinery when the underlying configuration

manifold is given by filaments.

To establish the general picture, we begin with a brief recall of

fluids from the point of view of Newtonian dynamics on a Riemann-

ian configuration manifold. Readers not familiar with Riemannian

geometry can find relevant background material in [Gallot et al.

2004].

Table 1. Notation.

Notation Meaning

γ ∈ M ⊂ C∞(S1,R3) filament configuration manifold

TM, T ∗M tangent bundle and its dual, the co-

tangent bundle

⟨·, ·⟩ metric

Y ♭(·) B ⟨Y , ·⟩

⟨α ♯, ·⟩ B α(·)

musical isomorphisms mapping vec-

tor fields Y to co-vector fields Y ♭
and

conversely mapping co-vector fields

(1-forms) α to vector fields α ♯

Ûγ , γ̊ ∈ TγM tangent vector at γ which is a velocity

field along γ

a : S1 → R+ positive radius of the filament

A B πa2
cross sectional area of filament

T normalized tangent vector of γ

Ûγ⊤ B ⟨T , Ûγ ⟩T

Ûγ⊥ B Ûγ − Ûγ⊤

tangential and normal components

along γ

⟨ Ûγ , γ̊ ⟩(1,2) B

⟨ Ûγ⊤, γ̊⊤⟩ + 2⟨ Ûγ⊥, γ̊⊥⟩

anisotropic inner product along γ

I : TM → T ∗M positive definite inertia tensor map-

ping vectors to co-vectors

⟨·|·⟩ : V ∗ ×V → R dual/primal pairing of co-vectors and

vectors for a vector space V

D : TM → T ∗M positive semi-definite drag tensor

B : TM → T ∗M skew-adjoint “magnetic field” tensor

ρ, µ,ν =
µ
ρ density, dynamic viscosity, and kine-

matic viscosity

∇M,∇M̃ Levi-Civita connection (covariant de-

rivative) onM & M̃

U ,C,G, F Biot–Savart energy of a unit strength

filament, circulation, potential en-

ergy (e.g., gravitational potential), and
force

uBS C CûBS velocity on γ due to the Biot–Savart

field as the product of strength C and

a unit strength filament velocity ûBS

д0 = (0, 0,−9.8) gravity vector

At B
ρ1−ρ2

ρ1+ρ2

Atwood number: relative density dif-

ference (ρ1 > ρ2)
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2 NEWTONIAN DYNAMICS OF FLUIDS
LetM be a configuration space equipped with a Riemannian metric

⟨·, ·⟩. Given a point γ ∈ M and a velocity Ûγ ∈ TγM denote the

kinetic energy as
1

2
⟨ Ûγ , Ûγ ⟩. The metric induces a ♭-operator (one of the

musical isomorphisms [Gallot et al. 2004, 2.B(2.66)]) mapping vectors

to co-vectors. This is also called the inertia tensor I : TM → T ∗M
so that at each γ ∈ M

⟨I Ûγ |γ̊ ⟩ B ⟨ Ûγ , γ̊ ⟩, Ûγ , γ̊ ∈ TγM

and I Ûγ becomes the momentum (co-vector) associated to a velocity

(vector) Ûγ ∈ TγM . Here we use ⟨·|·⟩ to denote the pairing of dual

and primal spaces of a vector space.

M

t 7→ γt
Ûγ

In the case of incompressible fluids

M = SDiff(M) is the Lie-group of

volume preserving diffeomorphisms

γ : M → M of the fluid domain M ⊆
R3

to itself [Arnold and Khesin 1998].

Its tangent spaces are the divergence

free (no production or loss) vector fields u : M → R3
tangent to the

boundary with normal N (no particles traveling through the wall)

TγM = { Ûγ = u ◦ γ | divu = 0, ⟨u,N ⟩ = 0} .

The kinetic energy of a divergence free velocity field Ûγ ∈ TγM
derives from its squared L2

-norm

E( Ûγ ) =
ρ

2

∫
M
| Ûγ |2 =

ρ

2

∫
M
|u |2

where ρ denotes the density.

Returning to the general case, we note that a Riemannian mani-

fold has a unique Levi-Civita connection ∇M (covariant derivative

compatible with the metric and torsion free [Gallot et al. 2004, 2.B]).

The acceleration Üγ of a trajectory t 7→ γt is then

Üγ = ∇M
∂t
Ûγ .

Here we see that in the Riemannian setting the 2
nd

time derivative

involves the covariant derivative, since we need to differentiate a

tangent vector field (velocity) along a path (time evolution) in a

Riemannian manifold. Newton’s Law of Motion can now be stated

as follows. Suppose Ft ∈ T
∗
γtM is a given net force (co-vector) along

the trajectory t 7→ γt then

I Üγ = F .

For F = 0 we get geodesic (“straightest”) motion.

Returning to incompressible fluids, geodesic motion, i.e., time

evolution of the fluid field without any forces acting on it, gives rise

to the Euler equations in Lagrangian form on vector fields [Arnold

and Khesin 1998]

∇M
∂t
Ûγ =

(
∂u
∂t + ∇

R3

u u + grad
p
ρ

)
◦ γ = 0. (1)

The first two terms in the middle are the usual material derivative in

the space of all diffeomorphisms, Diff(M) ⊃ M. The third term is the

projection of the material derivative back to TγM, i.e., the tangent
space to the submanifold of volume preserving diffeomorphisms.

Taken together these three terms yield the Levi-Civita connection

∇M [Gallot et al. 2004, 2.B.2]. Physically the projection can be seen

as a “pressure projection,” ensuring a divergence free vector field.

Important examples of forces F in the general setting are those

due to a potential energy G : M → R, F = −dG, and drag forces

due to dissipation. In a linear theory, the drag force is given by

−D Ûγ where D : TM → T ∗M is a self-adjoint positive semi-definite

tensor. A typical Newtonian dynamical system then takes the form

I Üγ = −D Ûγ − dG . (2)

In the case of incompressible fluids, the addition of dissipation

yields the Navier-Stokes equations in vector form

∇M
∂t
Ûγ = ν (∆u) ◦ γ (3)

where ν =
µ
ρ is the kinematic viscosity and ∆ the negative definite

Laplacian.

Fig. 5. Details of Thomson chandelier from experiment (left) and simulation
(right). The structure is approximately 5 cm in size.

2.1 Roadmap
Here is how we will apply these ideas to derive equations of mo-

tion for filaments: First, we define the configuration spaceM for

filaments (Sec. 3.1). The geometry ofM will be independent of

the circulation C , i.e., the strength of the filaments. Defining the

velocity field generated by the filaments, which does depend on C ,
we then compute their kinetic energy, using the metric onM and

a potential energy term (Sec. 3.2). The forces acting on filaments

due to circulation are stated next (Sec. 3.3). The resulting equations

of motion are not geodesic with respect to the metric onM. This

motivates us to extendM by one dimension to a configuration

space M̃ on which the equations of motion are purely geodesic

(Sec. 3.4). Subsequently we complete our evolution model with drag

and buoyancy as in Eq. (2). Analyzing these equations we arrive at

first order differential equations for filament velocity, thickness, and

circulation (Sec. 4).

3 VORTEX FILAMENTS WITH VARYING THICKNESS

3.1 Filament Geometry
A filament is an embedded closed curve γ : S1 → R3

where S1
is

some oriented 1-manifold diffeomorphic to the unit circle. (For now

we consider only a single filament, though we will allow for multiple

connected components each of which is diffeomorphic to the unit

circle.) We denote the unit tangent of γ byT : S1 → S2 ⊂ R3
and its

arclength 1-form by ds , so that

dγ = Tds .
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Filament thickness is given by a positive function a : S1 → R+,
with the filament interior M1 swept out by circular disks of radius

a(s), centered at γ (s) and orthogonal to T (s) (Fig. 6). We assume

S1
γ

R3

a
Tγ

Fig. 6. Geometry of a variable thickness vortex filament described by its
center curve γ together with a radius function a > 0. The full vortex filament
is then the embedded solid torus swept out by disks of radius a normal to
the tangent T along γ .

thatM = R3
is filled with an incompressible fluid and distinguish

between the interiorM1 of the filament and the exteriorM0 = M\M1.

Filaments are assumed so thin that the mass contained in the portion

ofM1 corresponding to any subsetU ⊂ S1
is given by the integral

overU of the 1-form

dm B ρπa2ds .

Since total mass is preserved, we let dm be a fixed 1-form on S1
,

something that can always be achieved for an evolving filament

t 7→ γt by a suitable time-dependent reparameterization. Taken

together this implies that the configuration spaceM of all filaments

with given total ink mass is an open set

M ⊂ C∞(S1,R3),

consisting of all embeddings γ : S1 → R3
with a tube around γ of

radius a = ( dm
ρπds )

1/2
yielding a smoothly embedded full torus.

3.2 Velocity Field Model
Given a variable thickness filament γ ∈ M we assume that all

vorticity is contained in the filament interior M1, where the flow

is Stokes. In the exteriorM0 the velocity field is harmonic with a

circulation around γ dictated by the vorticity insideM1 and at rest

at infinity. Demanding that both fields are continuous across the

boundary ∂M1 fixes the field u( Ûγ ,C) : R
3 → R3

uniquely (App. E)

as a function of the filament γ , its deformation Ûγ , and its strength

parameter (circulation C).
The kinetic energy of u can be written as the sum of a “linear”

component due to motion of γ , and a “rotational” component due to

circulation

2E( Ûγ ,C) B ρ

∫
R3

|u( Ûγ ,C)|2

= ρ

∫
R3

|u( Ûγ , 0)|2 + ρ

∫
R3

|u(0,C)|2.

For now we assume ρ to be the same throughoutM , but will distin-

guish different densities inM1 andM0 later.

This decomposition relies on the approximate L2
-orthogonality

of u( Ûγ , 0) and u(0,C) for thin filaments. To see this, first consider the

interiorM1 in a plane orthogonal to the tangent vector of γ . There,
to first order, u( Ûγ , 0) is a dipole while u(0,C) is a monopole, which

are L2
orthogonal (Fig. 9; left & center). For the exterior M0 note

that u( Ûγ , 0) gives rise to the gradient of a potential, while u(0,C)

is divergence free and tangential to the boundary of the filament.

Application of Green’s first identity then yields the vanishing of

their L2
inner product.

The first summand defines the inertia tensor onM (App. B.2)

⟨I Ûγ | Ûγ ⟩ B ρ

∫
R3

|u( Ûγ , 0)|2 =
4

3

∫
S1

| Ûγ |2
(1,2)dm (4)

through | Ûγ |2
(1,2)
B | Ûγ⊤ |2 + 2| Ûγ⊥ |2 which weighs tangential Ûγ⊤ B

⟨ Ûγ ,T ⟩T and normal Ûγ⊥B Ûγ − Ûγ⊤ directions along γ differently. The

higher weight in the normal direction is not surprising once one

considers that tangential motion requires less work than normal

motion.

The second summand is quadratic in C and is well approximated

for thin filaments by the Biot–Savart kinetic energy (App. B.2.1)

ρ

∫
R3

|u(0,C)|2 ≈ 2C2U (5)

where U denotes the Biot–Savart energy of a unit strength filament

of shape γ (App. B.1.1). Together the two summands give us the

overall kinetic energy

E( Ûγ ,C) = 1

2
⟨I Ûγ | Ûγ ⟩ +C2U (6)

with C as a constant parameter of our model.

3.3 Equations of Motion
The forces acting on a variable thickness filament are given by

Moore and Saffman [1972, Eq. 5.19] (App. C) as

F = ρCT × (Ûγ − uBS)ds −
ρC2

4π

da

a
T , (7)

where uBS : S1 → R3
is the Biot–Savart velocity generated by the

filament, acting on the filament. The first term is the Kutta-Joukowski

lift force [Saffman 1992, § 3.1] (normal to the filament) proportional

to the relative velocity of the filament. The second term is due to

thickness variations (tangential to the filament). When these forces

are in balance (F = 0), vanishing of the normal component implies

Ûγ = uBS. Vanishing of the tangential component implies a = const.

This characterizes the classical setting where velocity is due only to

the Biot–Savart law and thickness is constant along the filament

(though variable in time). Conversely, additional forces such as

buoyancy and dissipation will make the lifting term and thickness

variations relevant, taking us beyond the classical setting.

By gathering terms linear or quadratic in C we can rewrite the

force to reveal a deeper structure which will lead us to geodesic

equations (Sec. 3.4). To wit

I Üγ = ρCT × (Ûγ − uBS)ds −
ρC2

4π

da

a
T

= C (ρT × Ûγds) −C2

(
ρT × ûBSds +

ρ

4π

da

a
T

)
= −CB Ûγ −C2dU (8)

using uBS C CûBS, defining the skew-adjoint tensor B : TM →

T ∗M, which acts like a magnetic field, and noting that the term

proportional to C2
is the differential of the normalized Biot–Savart

energyU (App. B.1.1). In other words, the Biot–Savart energy C2U
acts here as if it were a potential energy when in fact it is a kinetic
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energy (cf. Eq. (6)). The left-hand side of Eq. (8) involves the Levi-

Civita connection ∇M since Üγ = ∇M
∂t
Ûγ . The particulars of ∇M are

unimportant since I Üγ will be dropped later (Sec. 4.1).

Unfortunately Eq. (8) is not yet in the form needed to add viscous

drag in a sensible way. A potential energy is not affected by vis-

cous dissipation and hence does not interact with filament motion

through drag forces. What we need is a setup where the Biot–Savart

energy stored in the fluid circulation is part of the inertia, i.e., we
need a metric which incorporates U . To accomplish this we will

extend M by an extra dimension. In this added dimension, the

velocity component of such an extended filament γ̃ will represent

the circulation around the filament γ .

M

π π

Z
M̃

γ̃

γ

Fig. 7. We extendM through an additional (“vertical”) dimension into M̃ in
such a manner that geodesic paths γ̃ ∈ M̃ project to paths π ◦ γ̃ = γ ∈ M
which satisfy the filament equations of motion Eq. (8) (Sec. 3.3). The tangent
vector field Z along the vertical direction captures the additional circulation
parameter.

3.4 Filament Motion is Geodesic
In the absence of drag and gravity, filament motion can be viewed

as geodesic motion on a Riemannian manifold M̃, constructed from

M by adding one more dimension (App. A, Fig. 7).

The manifold M̃ comes with a projection map π : M̃ →M and

a vector field Z . For a curve γ̃ : R → M̃ we can then define the

circulation by the scalar product

C = ⟨ Û̃γ ,Z ⟩.

For notational convenience we split the tangent spaces as Tγ̃ M̃ =
Z⊥ ⊕ RZ representing tangent vectors

Û̃γ ∈ Tγ̃ M̃ as pairs ( Ûγ ,C) ∈
TγM × R. The inertia tensor of M̃ is then written as

Ĩ =

[
I 0

0 2U

]
so that the kinetic energy of γ̃ as a mass point equals the kinetic

energy Eq. (6) of the velocity field corresponding to the filament

γ B π ◦ γ̃ with circulation C = ⟨ Û̃γ ,Z ⟩

1

2
⟨Ĩ Û̃γ | Û̃γ ⟩ = 1

2
⟨I Ûγ | Ûγ ⟩ +C2U .

With this construction γ̃ is geodesic if and only if C is constant and

the filament γ moves according to Eq. (8)

Ĩ Ü̃γ =

(
I Üγ +CB Ûγ +C2dU

2U ÛC

)
=

(
0

0

)
(9)

which is the co-vector version of Eq. (20) (App. A).

We are now ready to add viscous dissipation and gravity on M̃ to

yield the complete evolution equations.

4 VORTEX FILAMENTS WITH DISSIPATION AND
BUOYANCY

Viscous dissipation in the Navier-Stokes equations is µ(∆u) ◦ γ .
Dealing with incompressible fluids, the dissipation is proportional

to the squared L2
-norm of the curl of the velocity field defining a

positive definite quadratic form D̃ : TM̃ → T ∗M̃ (App. B)

⟨D̃ Û̃γ | Û̃γ ⟩ = µ

∫
R3

|curlu( Ûγ ,C)|2

= µ

∫
R3

|curlu( Ûγ − uBS, 0)|
2 + µ

∫
R3

|curlu(uBS,C)|
2

= 8πµ

∫
S1

| Ûγ − uBS |
2

(1,2)ds + 4πµC2

∫
S1

1

a2
ds (10)

To incorporate gravity, define the potential

G̃ B −

∫
S1

⟨γ ,д⟩dm (11)

where д B Atд0 is the effective gravity vector for д0, the standard

downward pointing gravity vector. For bubble rings the Atwood

number (At) is −1 and for ink filaments
ρink−ρ
ρink+ρ .

The final evolution equations are

Ĩ Ü̃γ = −D̃ Û̃γ − dG̃

(cf. Eq. (2)) which are nothing other than the co-vector version of the

Navier-Stokes equations Eq. (3) (with buoyancy) on our configuration

manifold M̃. Unpacking all terms in this equation yields

I Üγ =ρCT × (Ûγ − uBS)ds −
ρC2

4π

da

a
T

− 8πµ( Ûγ − uBS)
⊤ds − 16πµ( Ûγ − uBS)

⊥ds

+ ρπa2дds (12a)

2U ÛC =8πµ

∫
S1

⟨ûBS, Ûγ − uBS⟩(1,2)ds − 4µC

∫
S1

1

a2
ds (12b)

using Eqs. (8), (11), and (21).

What about different densities? We have derived the inertia Ĩ
and dissipation tensor D̃ assuming the same density inM1 andM0.

Using the Atwood number for the buoyancy force we are using a

Boussinesq approximation [Saffman 1992, Sec. 5.8]. This is reasonable

for ink filaments, but less so for bubble rings. Whether accounting

for different densities and viscosities inM1 andM0, when computing

the inertia and dissipation tensors, pays off, is unclear due to the thin

filament assumption. We leave exploration of this issue to future

work.

4.1 First Order Equations
To arrive at our final equations we set I Üγ = 0 in Eq. (12a) (and leave

Eq. (12b) unchanged). We do so because I Üγ goes to zero in the thin

limit (a → 0) while the right-hand side of Eq. (12a) grows without

bound.
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Dividing Eq. (12a) by ρds and using the kinematic viscosity ν =
µ
ρ

we arrive at a first-order differential equation for γ

0 = (−16πν +CT×)( Ûγ −uBS)
⊥ − 8πν ( Ûγ −uBS)

⊤ −
C2

4π

1

a

da

ds
T +πa2д.

Using the fact that (−16πν +CT×)−1 = (256π 2ν2 +C2)−1(−16πν −
CT×) in the plane orthogonal toT , we split this equation into normal

and tangential differential equations for γ

Ûγ⊥ = u⊥
BS
+

16π 2νa2

256π 2ν2 +C2
д⊥ +

πa2C

256π 2ν2 +C2
T × д (13a)

Ûγ⊤ = u⊤
BS
−

C2

32π 2ν

1

a

da

ds
T +

a2

8ν
д⊤. (13b)

4.2 Thickness Evolves under Burgers’ Equation
To study the influence of the curve tangential flow on the thickness

of the filament consider an evolution Ûγ⊥ = 0 and Ûγ⊤ without u⊤
BS
.

Then the (scalar) speed υ is given by

υ =
a2

8ν
⟨д,T ⟩ −

C2

32π 2ν

1

a

da

ds
. (14)

This is an equation in Lagrangian coordinates. The domain of the

variables a, γ , and ds is S1
. The time derivative Ûγ⊥ is with respect to

a Lagrangian location and dÛs is generally non-zero. However d Ûm is

zero. Noting these facts we can translate the equation for the speed

υ into Eulerian form. Let ∂Et be the Eulerian partial derivative with

respect to time. Then ∂Et ds = 0 and the conservation of volume

πa2ds can be written, using the Lie derivative L, as

∂Et (πa
2ds) + Lυ (πa

2ds) = 0.

As a conservation law this reads as

∂Et (πa
2) + ∂s (πa

2υ) = 0.

Substituting Eq. (14) and defining the cross sectional area A B πa2

we obtain

∂Et A + ∂s

(
⟨д,T ⟩

8πν
A2

)
=

C2

64π 2ν
∂2

sA. (15)

This is a viscous Burgers’ equation [Bateman 1915; Burgers 1948]

(see also [Whitham 1974, Ch. 4]).

4.3 Equilibrium Thickness
It is instructive to see what happens to the thickness evolution in

the vanishing viscosity limit, i.e., ν → 0. In the Burgers’ equation

this is equivalent to rescaling time so as to reach the steady state

∂s

(
⟨д,T ⟩

8π
A2

)
=

C2

64π 2
∂2

sA.

Integrating s once and noting that the integration constant vanishes

since we are dealing with a periodic domain, we find that the steady

state of the cross-sectional area A satisfies a Bernoulli differential

equation [Hairer et al. 1993, Ch. I.3, Ex. 7]

∂sA =
8π

C2
⟨д,T ⟩A2. (16)

This can be solved exactly in terms of the height (or depth) z =
⟨
д
|д | ,γ ⟩ and an integration constant z0 ∈ R

|д |(z − z0) = −
C2

8πA
. (17)

That is, the cross-sectional area is inversely proportional to the

depth shifted by some constant z0 (Fig. 8). The latter is uniquely

determined by the tube volume

∫
S1
Ads .

Fig. 8. A bubble ring starting in a vertical plane (lower right) is thicker
towards the top. As it rises the ring grows and its symmetry plane turns
more and more horizontal. The initial ring is 1 m in diameter, is 0.12 m in
averaged thickness, and carries a circulation of 4.0 m

2
s
−1. See also the video

at 1:52.

Eq. (17) can also be understood as a pressure balance equation.

The fluid pressure (up to an ambiant constant) at the filament tube

surface is given by −
ρ
2
( C

2πa )
2
according to Bernoulli’s law applied

to the vorticity-free tube exterior (App. C). This pressure is then

balanced by the hydrostatic pressure ρ |д |z.

5 IMPLEMENTATION
Each filamentγ is represented by a closed polygonal curve embedded

in R3
with each edge annotated with a thickness variable a. The

polygonal curve also carries a circulation variable C . Each edge is

assigned its volume V = πa2∆s where ∆s is the length of the edge.

To stably evolve the filament by Eq. (13), we split the dynamics

into two parts. In the first part we evolve the filament according to

the Biot–Savart flow and the normal equation Eq. (13a)

Ûγ = uBS +
16π 2νa2

256π 2ν2 +C2
д⊥ +

πa2C

256π 2ν2 +C2
T × д, (18)

together governing the deformation of the center curve γ . Note that
the radius a appearing on the right-hand side of Eq. (18) can be

computed from knowledge of the edge volume and the edge length

which depends on the current position of the vertices of γ .
In the second part of the splitting the remaining tangential evolu-

tion is integrated

Ûγ⊤ = −
C2

32π 2ν

1

a

da

ds
T +

a2

8ν
д⊤. (19)

This equation does not change the shape of the curve and can be

reduced to Burgers’ equation for the cross sectional area A = πa2

on a fixed curve (cf. Sec. 4.2, Eq. (15)).
This leads to the main integration algorithm (with details of the

numerical implementation delegated to App. D):
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Algorithm 1 Main algorithm

1: for each time step do
2: Evolve the vertices of γ by Eq. (18) with an ODE solver for

∆t time span. ▷ App. D.1

3: Evolve A = πa2
by the viscous Burgers’ equation Eq. (15)

for ∆t time span. ▷ App. D.2

4: Evolve C with Eq. (12b). ▷ App. D.3

5: Resample and allow topological changes of γ . ▷ App. D.4
6: t ← t + ∆t .
7: end for

6 EVALUATION
We have implemented the theory presented here using SideFX’

Houdini 16.5 software for all simulations and visualizations shown.

The complete implementation software, allowing replication of all

examples from this paper, is available in the form of Houdini assets

with example hip files in the ancillary material.

6.1 Performance
Themethod is quite fast since our filaments are polygons of moderate

resolution. The ink simulations visualized in the right columns of

Figs. 2 and 4 have around 40 to 600 edges depending on the frame

number and the simulations take 0.037 s and 0.155 s per time step on

a machine with a 4.2 GHz Intel Core i7. Similarly for the bubble ring

simulations we find approximately 40 to 170 edges and computation

times per time step between 0.038 s and 0.072 s.

6.2 Parameters
All physical parameters needed to control the simulations take on

their real world values in SI units. These are the initial ring radius in

meters (m), initial ring thickness in meters (m), initial ring circulation

in m
2

s
−1
, Atwood number (dimensionless, At ≈ 0.01 for ink and

At ≈ −1 for bubbles), kinematic viscosity of water ν ≈ 10
−6

m
2

s
−1
,

and the gravity vector д0 ≈ (0, 0,−9.8) m s
−2
.

6.2.1 Ink Chandeliers. When modeling ink the initial circulation C
is not very important. A downward traveling ring with arbitrarily

highC eventually hasC dying down to a critical value after which the

ring starts to expand more rapidly, the thickness distribution driven

by Burgers’ equation becomes unstable, and after a while secondary

rings begin to form (Figs. 4, 5). Their circulations continue to evolve

according to Eq. (12b) until they die down to their critical values

again, setting the stage for the next generation of rings. The trails

visible in Fig. 5 just mark the path traced out by the filament. They

were added in order to more closely match the visual appearance of

real ink.

6.2.2 Bubble Rings. These take place at a larger length scale, and

therefore their circulation stays relatively constant over a long time

period. In order to have stable bubble rings this circulation C has

to be large enough. In this C ≫ ν regime the remaining effect of

ν is visible in the propagation speed of thickness features due to

Burgers’ equation (Figs. 1, 3, 8). In the limit of C →∞ the thickness

becomes constant.

Achieving a reconnection event mimicking closely the real under-

water footage required a few iterations of differing relative placement

of the initial rings, but provided no additional challenges.

7 LIMITATIONS AND POSSIBLE REFINEMENTS
There are a number of refinements of our approach whose study

would be valuable and we discuss them here.

In our model formulation we assume the same density and viscos-

ity inM1 andM0. For ink filaments this, together with the Boussinesq

approximation, is a standard assumption. For bubble rings it may

pay off to account for the different density and viscosity in M1

vs.M0 when deriving the inertia and dissipation tensors. We note

however that the current method works remarkably well even for

bubble rings. When the circulation around bubble rings becomes

small they break up due to surface tension effects [Da et al. 2016].

While surface tension forces could be added to our model, evolution

after the breakup would require a Lagrangian primitive other than a

closed curve. We leave this extension to future work.

In our implementationweworkwith a separateC for each filament

component, following its own evolution equation Eq. (12b). Eq. (12a)

then uses the Biot–Savart field generated by all components. It is

possible to augment the Kaluza–Klein construction by adding a

dimension for each filament component. This would result in a

coupled evolution equation for the vector ofC variables. It would be

interesting to see whether this effort pays off.

Interaction between multiple components of the same filament

(same C value) or between multiple filaments occurs only via the

Biot–Savart field. Since the dipole-like field generated by additional

filament motion is a short range field, this is a valid approximation.

However, in situations like drop formation or reconnection it might

be helpful to work with the full exterior velocity field. Relatedly,

generating the full interior velocity field would be useful for advec-

tion. For this integral equation techniques may be useful [Lundgren

and Mansour 1988, 1991; Da et al. 2016].

We believe that our drop formation model handles vorticity cor-

rectly by creating a new child ring. However, this does not seem

to capture correctly the ink flow during drop formation. The ink

connects parent and child ring, maintaining the impression of a

connected ink filament. It would be desirable to develop a more so-

phisticated model for drop formation which treats ink and vorticity

separately. A similar question arises regarding the formation of the

faint ink domes. Right now these are produced in our simulations as

trails of the filaments. A theory describing their creation (and an

implementation of this theory) is as yet missing.

8 CONCLUSION AND OUTLOOK
In the present paper we developed a variable thickness, viscous

vortex filament to model low to moderate Reynolds flow phenomena

such as bubble rings and ink chandeliers. We derived the equations

of motion, including viscous dissipation, from geodesic equations

on a configuration manifold for filaments with variable circulation.

To go beyond the classical descriptions of vortex filaments we used

ideas of Kaluza and Klein to extend a given configuration manifold in

such a way that a motion law with magnetic field becomes geodesic

on the extended Riemannian manifold. Numerical simulations based
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on these equations exhibit many of the phenomena observed in

experiments with under water bubble rings of ink dropped in water.

There are many directions in which the physics modeled by

these filaments can be refined (Sec. 7). For bubble rings inclusion

of surface tension promises to provide a basis for modeling their

eventual disintegration. In the case of ink filaments a physical model

describing the traces of ink (“domes”) left behind would be desirable,

as would be a more complete description of the transition from

drop to filament. More generally, it may also be possible to extend

these algorithms to more general shapes beyond tori. A particularly

interesting avenue for future research would be the application

of the machinery of Kaluza and Klein to other physical systems

which can be cast in the Riemannian setting. One could use it to add

viscosity effects in the context of surface-only approaches [Loeschke

2012, Ch. 2], [Izosimov and Khesin 2018, Thm. 7.10], and [Lundgren

and Mansour 1988; Da et al. 2015, 2016].
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A NON-RELATIVISTIC KALUZA-KLEIN
In the 1920’s Kaluza [1921] and Klein [1926] proposed a construction

unifying general relativity and electromagnetism by extending space-

time with an extra dimension. In our non-relativistic context the

analogous construction unifies electromagnetism with Newtonian

mechanics. A particle γ with charge C traveling in a magnetic field

B and subject to an electric potential U , can either be thought of

as Newtonian mechanics with additional Lorentz and Coulomb

forces (Eq. (8)), or as geodesic motion on a higher dimensional

configuration space. Specifically, as claimed in Sec. 3.4, we can extend

the RiemannianmanifoldM by one extra dimension to a Riemannian

manifold M̃ in such a way that the solutions t 7→ γt ∈ M of our

equations of motion without gravity and drag (Eq. (8)) are the

projections of geodesics t 7→ γ̃t ∈ M̃. In this section we construct

M̃ explicitly.

As a manifold, M̃ is just the product M̃ = M × R and the

projection π : M̃ →M is just the projection onto the first factor.

Note however that the projection θ : M̃ → R onto the second

factor (including the corresponding hypersurfaces θ = const) will

ultimately be irrelevant for the geometry of M̃. On the other hand,

the vector field Z B ∂θ will be important.

Our magnetic field B : TM → T ∗M, Ûγ 7→ −ρT × Ûγds from Eq. (8)

arises from the Marsden-Weinstein [1983] 2-form β onM

β( Ûγ , γ̊ ) B ρ

∫
S1

det(dγ , Ûγ , γ̊ ),

as −ι Ûγ β = −ρT × Ûγds (using Tds = dγ ). Importantly, it is exact with

β = dα for

α( Ûγ ) B
ρ

3

∫
S1

det(dγ ,γ , Ûγ ).

Then for each θ ∈ R, γ ∈ M, X ∈ TγM we define a tangent vector

X̃ ∈ T(γ ,θ )M̃ = TγM ⊕ R as X̃ B (X ,−α(X )).

For a function f : M → R the corresponding function on M̃ is

defined as
˜f B f ◦ π . In other words we have defined the lifting

map for tangent vectors and functions onM to those on M̃

Now we define a Riemannian metric on M̃ by setting for vector

fields X ,Y onM

⟨X̃ , Ỹ ⟩ B ⟨X ,Y ⟩ ⟨X̃ ,Z ⟩ B 0 ⟨Z ,Z ⟩ B (2Ũ )−1.

Theorem A.1. The Levi-Civita connection ∇M̃ of this Riemannian
metric on M̃ is given by

∇M̃
X̃
Ỹ =

�
∇MX Y − 1

2

�β(X ,Y )Z [Gallot et al. 2004, 3.D(3.55)]

∇M̃
X̃

Z = ∇M̃Z X̃ = (4Ũ )−1

(�
(BX )♯ − 2

�dU (X )Z )
∇M̃Z Z = (2Ũ )−2 �

gradU .

Here ♯ denotes the musical isomorphism mapping co-vectors to vec-
tors [Gallot et al. 2004, 2.B(2.66)].

Proof. Since the vector fields X̃ and X = π∗X̃ are π -related, we
have

π∗[X̃ , Ỹ ] = [X ,Y ].

Moreover, X̃θ = −�α(X ) and therefore

[X̃ , Ỹ ]θ = −X̃ α̃(Y ) + Ỹ�α(X ) = −�dα(X ,Y ) − �α([X ,Y ])
⇐⇒ [X̃ , Ỹ ] =�[X ,Y ] −�β(X ,Y )Z

Similarly, one can check that for all vector fields X onM we have

[X̃ ,Z ] = 0. Using these Lie brackets it is straightforward to verify

that the above equations define an affine connection ∇M̃ on M̃

which is metric and torsion-free. □

For a path t 7→ γ̃t = (γt , θt ) in M̃ we set

Û̃γ C Û̃γ +C · 2UZ .

In words: the velocity of the lift is the lift of the velocity plus

additional terms (C · 2UZ ). Then γ̃ is a geodesic if and only if

0 = ∇M̃∂t
Û̃γ =

(
∇M
∂t
Ûγ +C(B Ûγ )♯ +C2

gradU
)∼
+ ÛC · 2UZ (20)

which is equivalent to our equations of motion Eq. (9).

B MOVING FLUID TUBES
To compute the kinetic energy as well as the dissipation rate of the

fluid field u on R3
induced by (γ , Ûγ ,C), we compute corresponding

densities in slices orthogonal to the unit tangent T along γ . The
filament is taken to have a disk cross section of radius a > 0 in each

such slice and we construct corresponding divergence-free vector

fields to explicitly calculate the energy (
1

2
∥u∥2) and dissipation

density (µ∥ω∥2 for ω = curlu) per slice.
We distinguish three cases (Fig. 9): circulation only (no normal

motion), normal translation (due to Ûγ ), and pipeflow (tangential flow

in the interior).

Fig. 9. We decompose a flow field into components induced by pure rotation
(left), normal motion (middle), and interior tangential motion (right).

B.1 Circulation Only
In this case there is no motion within the slice and we only see a

point vortex in the (x,y)-plane:

u0(x,y) =
C

x2 + y2

(
−y
x

)
for x2 + y2 ≥ a2.

The Stokes flow on the inside matching u on the boundary is just

linear rotation (vanishing Laplacian)

u1(x,y) =
C

a2

(
−y
x

)
for x2 + y2 ≤ a2.

ACM Trans. Graph., Vol. 38, No. 4, Article 129. Publication date: July 2019.



On Bubble Rings and Ink Chandeliers • 129:11

Since we approximate the contribution of circulation to the kinetic

energy of a filament (Eq. (5)) by the Biot–Savart energy (App. B.1.1),

we only need the dissipation density per slice

µ

∫
R2

|ω |2 = µ
4π

a2
C2

B.1.1 Biot–Savart Energy and Velocity. The normalized Biot–Savart

energyU of a variable thickness vortex filament can be written as the

sum of the normalized Biot–Savart energy of a constant thickness

(a0) filament and a correction term

U = U (a0) +
ρ

4π

∫
S1

(
− log

a

a0

−
1

2

)
ds

U (a0) =
ρ

8π

∫
S1×S1

⟨T (s),T (s̃)⟩√
|γ (s) − γ (s̃)|2 + µ2

RM
a2

0

dsds̃ µRM = e−3/4.

This formula is based on the cut-off Biot–Savart integral introduced

by Thomson [1883] and Rosenhead [1930] and elaborated in [Tay-

lor 1953; Widnall and Bliss 1971; Moore and Saffman 1972] (see

also [Saffman 1992, pp. 213]). The variations then follow as

dU ( Ûγ ) = ρ

∫
S1

det(dγ , ûBS, Ûγ ) +
ρ

4π

∫
S1

da

a
⟨T , Ûγ ⟩

where ûBS = û
(a0)

BS
−

1

4π
log

a

a0

T ×
dT

ds

and û
(a0)

BS
=

1

4π

∫
S1

T (s̃) × (γ (s) − γ (s̃))(
|γ (s) − γ (s̃)|2 + µ2

RM
a2

0

)
3/2

ds̃ .

B.2 Normal Translation
This case has neither circulation nor interior flux, but the disk moves

in the y-direction with speed υ. A vector field u has a matching

normal component on ∂M1 if for x2 + y2 = a2

υy = uxx + uyy.

This condition can be verified for the vector field

u0(x,y) =
υa2

(x2 + y2)2

(
2xy

y2 − x2

)
for x2 + y2 ≥ a2.

This u0 has the harmonic velocity potential

ϕ(x,y) = −
υa2

x2 + y2
y.

The Stokes flow that extends this exterior velocity to the inside is

u1(x,y) =
υ

a2

(
2xy

−3x2 − y2 + 2a2

)
for x2 + y2 ≤ a2.

One can directly verify that divu1 = 0 and

curlu1(x,y) = −
8υ

a2
x ∆u1(x,y) = −

8υ

a2

(
0

1

)
.

Since ∆u1 is a gradient vector field, u1 is a Stokes flow and we get

ρ

2

∫
R2

|u |2 =
4

3

ρπa2υ2 µ

∫
R2

|ω |2 = µ16πυ2.

B.2.1 Remark. We are now also in a position to fully justify the

approximation in Eq. (5). For thin filaments

2C2U = ρ

∫
R3

|u(uBS,C)|
2 = ρ

∫
R3

|u(uBS, 0)|
2 + |u(0,C)|2

≈ ρ

∫
R3

|u(0,C)|2

because the kinetic energy of normal displacements scales as a2

whileU scales as loga in the thin limit.

B.3 Interior Flux
Here we have zero velocity on the outside and we determine u1 by

prescribing the mean value υ of the normal component of u1. This

leads to a quadratic velocity profile inside of the cylinder. For z the
normal direction to the slice we get

u1(x,y, z) =
2υ

a2

©«
0

0

a2 − x2 − y2

ª®¬ for x2 + y2 ≤ a2.

One can directly verify that divu1 = 0 and

curlu1(x,y, z) = −
4υ

a2

©«
−y
x
0

ª®¬ ∆u1(x,y, z) = −
8υ

a2

©«
0

0

1

ª®¬ .
Since ∆u1 is a gradient vector field, u1 is a Stokes flow and we get

ρ

2

∫
R2

|u |2 =
2

3

ρπa2υ2 µ

∫
R2

|ω |2 = µ8πυ2.

B.4 Dissipation Tensor
From the above equations we get the entries of the drag tensor

D̃ =

[
D11 D12

D∗
12

D22

]
as

D11 = 8πµ

∫
S1

⟨·, ·⟩(1,2)ds, D12 = 8πµ

∫
S1

⟨−ûBS, ·⟩(1,2)ds

D22 = 8πµ

∫
S1

|ûBS |
2

(1,2)ds + 4πµ

∫
S1

1

a2
ds .

The drag force −D̃ Û̃γ is then

− D̃ Û̃γ =

(
−8πµ( Û̃γ − uBS)

⊤ds − 16πµ( Ûγ − uBS)
⊥ds

8πµ
∫
S1
⟨ûBS, Ûγ − uBS⟩(1,2)ds − 4πµC

∫
S1

1

a2
ds

)
. (21)

C EQUATIONS OF MOTION: DERIVATION
Eq. (7) can be found in Moore and Saffman [1972, Eq. 5.19]. Here we

give a brief derivation using only the Bernoulli (tangential force F⊤)
and Biot–Savart (normal force F⊥) laws.

Tangentially the (negative) pressure gradient acts along γ . Owing
to the filaments being thin, rotation due to circulation will dominate

the flow inside the filament. An inertial observer moving along with

the filament will therefore mainly see a rigid rotation with a speed

u =
C

2πa
.

on the boundary ∂M1. On the exteriorM0 such a co-moving observer

will see an almost stationary vorticity-free flow, making Bernoulli’s
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law (u2/2 + p/ρ = const) applicable. Taking its negative gradient

we get

F⊤ =

(
−

ρC2

4π 2a3

da

ds
T

)
dm = −

ρC2

4π

da

a
T .

For the normal force F⊥ consider the continuous velocity field uh
which is harmonic in M0, has circulation C around M1, is Stokes

inside M1, and has zero normal velocity on ∂M1. What does its

vorticityωh = curluh look like? Denote byωBS the uniform vorticity

field inside of the filamentM1 with flux corresponding to the fixed

circulation C . We cannot expect ωh = ωBS because the velocity field

generated by ωBS, the Biot–Savart field of γ , induces a non-trivial
motion uBS : S1 → R3

both along and orthogonal to the filament.

In order to keep γ at rest we have to add to ωBS, the vorticity of a

dipole field (App. B.2) and a pipe flow (App. B.3), which together add

a velocity −uBS, counter-balancing the motion of γ induced by ωBS

ωh = ωBS + ω−uBS .

In the presence of circulation and non-vanishing filament velocity Ûγ ,
the vorticity field will look like

ωh = ωBS + ω Ûγ−uBS .

Inside the filament the velocity field corresponding to ωh is just a

rotation with angular velocity
C

2πa2
around the center curve. Neither

the uniform vorticity fieldωBS nor the pipe flow vorticity are affected

by this rotation. However, the dipole part of ω Ûγ−uBS adds additional
vorticity due to the rotation of the filament in which it “sits.” In each

small time increment ∆t this amounts to

∆t
C

2πa2
T × ω Ûγ−uBS .

Note that the pipe flow component of ω Ûγ−uBS is automatically an-

nihilated by T×. On the level of velocity, this adds momentum

as

∆t
C

2πa2
T × (Ûγ − uBS)dm = ∆t

ρC

2

T × (Ûγ − uBS)ds

and we arrive, accounting for the extra factor of 2 along the normal

direction in ⟨·, ·⟩(1,2), at Eq. (7).

D NUMERICAL IMPLEMENTATION DETAILS

D.1 Biot–Savart and Normal Flow
We adopt the 4

th
-order Runge–Kutta method to evolve the ODE

of Eq. (18). This only requires evaluation of the right-hand side

for a polygonal curve γ , the individual components of which are

elaborated in the following sections.

D.1.1 Evaluation of the Thickness. Let γ (0) be the initial polygonal
curve given at the current time step, equipped with thickness a

(0)

j
on the edges j ∈ E. Then any of its deformations γ can be assigned

thickness as

aj B a
(0)

j

√
∆sj
∆s (0)j

where∆s
(0)

j and∆sj are the length of edge j ofγ
(0)

andγ respectively.

Note that this conserves the volume of each edge.

D.1.2 Evaluation of the Normal Flow. The last two terms of Eq. (18)

are evaluated on each edge, where aj and Tj are both defined, fol-

lowed by averaging (weighted by edge lengths) to vertices.

D.1.3 Evaluation of the Biot–Savart Velocity. This is done by inte-

grating the Rosenhead–Moore kernel

uBS(s) =
C

4π

∫
S1

T (s̃) × (γ (s) − γ (s̃))(
|γ (s) − γ (s̃)|2 + µ2

RM
a2

)
3/2

ds̃

where the Rosenhead–Moore constant µRM = e−3/4
corresponds

to uniform core [Saffman 1992, pp. 213]. With γ being a polygonal

curve with straight edges , the integral is explicitly evaluated as a

sum over edges [Weißmann and Pinkall 2010]

udisc

BS
(s) =

C

4π

∑
j

(
⟨r j+1/2,Tj∆sj ⟩√
|r j+1/2 |

2 + µ2

RM
a2

j

−
⟨r j−1/2,Tj∆sj ⟩√
|r j−1/2 |

2 + µ2

RM
a2

j

)
·

r j−1/2 × r j+1/2

(∆sj )2µ
2

RM
a2

j + |r j−1/2 × r j+1/2 |
2

where r j±1/2 = γj±1/2 − γ (s), and j + 1/2 refers to the vertex incident

on edges j and j + 1. However, the polygonal approximation to

the smooth curve removes the contribution of the cross product

T (s̃) × (γ (s) −γ (s̃)) on the immediate neighboring edges j − 1, j . The
missing integral over [s − ∆sj−1, s + ∆sj ] can be approximated by

the localized induction given by

uLIA = −
C

4π
log

( √
∆sj−1∆sj

δRM

√
aj−1aj

)
T ×

dT

ds

where δRM =
1

2
e

1/4
and T × dT

ds is approximated by

2

Tj−1 ×Tj

∆sj−1 + ∆sj
,

the exact value of T × dT
ds for the interpolated curve being a circle

circumscribing three consecutive vertices incident to edges j − 1 and

j. Putting everything together, our evaluation of the Biot–Savart

velocity is given by

uBS = u
disc

BS
+ uLIA.

D.2 Discrete Burgers’ Equation
We discretize the Burgers’ equation by the finite volume method

of Godunov [1959] (see [LeVeque 2002, Ch. 12]). First we identify

Eq. (15) as a conservation law equation for A

∂Et A = −∂sφ +
C2

64π 2ν
∂2

sA (22)

with the flux function

φ = φ(A,T ) =
⟨д,T ⟩

8πν
A2.

In the discrete setting the given data Aj is associated with edges

and we want to solve for an updated (A∗j )j representing the result of
integrating Eq. (22) over a timespan ∆t . To do so, define the discrete

Laplace operator L (a symmetric negative-semidefinite sparse matrix)

by

(LA)j B 2

Aj+1 −Aj

∆sj + ∆sj+1

− 2

Aj −Aj−1

∆sj−1 + ∆sj
, (23)
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which approximates the integral of ∂2

sAds over the edge j . Integrating
Eq. (22) over the edge j and adopting the Crank–Nicholson scheme

for time integration, we have

∆sj

∆t
(A∗j −Aj ) = φ j−1/2 − φ j+1/2︸          ︷︷          ︸

C−∆φ j

+
C2

64π 2ν

(
L
A∗ +A

2

)
j

(24)

where the half index j + 1/2 as before denotes the vertex shared by

edges j and j + 1. The numerical flux φ j+1/2 is evaluated using the

existing data on the neighboring edges

φ j+1/2 = Φ(Aj ,Tj ;Aj+1,Tj+1), (25)

and the discrete flux function Φ respects the directions of the char-

acteristic velocities ∂Aφ(A,T ) on the neighboring edges

Φ(A−,T−;A+,T+) B


⟨д,T− ⟩
8πν A2

−, ⟨д,T−⟩A− > max{0,−⟨д,T+⟩A+}
⟨д,T+ ⟩
8πν A2

+, ⟨д,T+⟩A+ < min{0,−⟨д,T−⟩A−}

0, otherwise.

In practice Eq. (24) is rearranged to the linear system(
M −

C2

64π 2ν

∆t

2

L

)
A∗ = −∆t∆φ +

(
M +

C2

64π 2ν

∆t

2

L

)
A (26)

whereM B diag(∆sj ).

Algorithm 2 Discrete Burgers’ Equation (Tangential Flow)

Input: Cross sectional areas Aj over edges of a polygonal curve γ
with circulation C .

1: Compute edge lengths ∆sj and tangents Tj of γ .
2: Build L (Eq. (23)) andM = diag(∆sj ).
3: Compute φ j+1/2 on vertices. ▷ Eq. (25).

4: Solve Eq. (26). ▷ Alternatively Eq. (27) or Eq. (28).

Output: Updated cross sectional areas A∗j .

D.2.1 Volume Conservation. To see that the total volume is con-

served note that

∑
j φ j−1/2 − φ j+1/2 = 0 since it is a telescoping sum.

Similarly, from Eq. (23) it follows that

∑
j (LA)j = 0. Thus the sum

of Eq. (24) over all edges leads to conservation of total volume∑
j A
∗
j∆sj =

∑
j Aj∆sj .

D.2.2 Small Viscosity Large Circulation Limit. The Crank–Nicholson
time step in Eq. (26) is accurate only when

C2

64π 2ν ≪
∆s2

∆t . For largeC2

64π 2ν , e.g., for bubble rings, we use the backward Euler scheme(
M −

C2∆t

64π 2ν
L

)
A∗ = −∆t∆φ +MA. (27)

Note that
C2

64π 2ν is the diffusion term (right-hand side) of Eq. (15).

When
C2

64π 2ν ≫
∆s2

∆t the thickness quickly relaxes to the steady state

Eq. (16)

C2

64π 2ν
LA∗ = ∆φ, (28)

which is the limiting case t →∞ of Eq. (27).

D.3 Integration of Circulation
Writing the circulation equation (Eq. (12b)) as

ÛC =
4πµ

U

∫
S1

⟨ûBS, Ûγ − uBS⟩(1,2)ds︸                                ︷︷                                ︸
Cf (C)

−
2µ

U

∫
S1

1

a2
ds︸         ︷︷         ︸

Ck

C

where the dependency of f on C is in Ûγ − uBS, we update the

circulation by an approximated integral C∗ ≈ C(∆t) given the initial

condition C(0) = C0 of the present iteration. We approximate the

nonlinear term f (C) by the explicit constant f (C0) and integrate

the remaining linear ODE exactly

ÛC = −kC + f (C0)

=⇒ C∗ = e−k∆tC0 + (1 − e
−k∆t )

f (C0)

k

= e−k∆tC0 + (1 − e
−k∆t )

2

∫
S1
⟨ûBS, Ûγ − uBS⟩(1,2)ds∫

S1

1

Ads
.

To evaluate the normalized Biot–Savart energy U involved in evalu-

ating k , we adopt [Weißmann and Pinkall 2010, App. A]. All integrals

over S1
are evaluated by sums over edges.

D.4 Resampling and Topological Changes
D.4.1 Resampling. To maintain a quality discretization of the de-

forming space curve it must be resampled. At the end of each main

iteration (Alg. 1) positions γi and cross sectional areas Aj are in-

terpolated with the aid of splines. New vertex positions as well as

corresponding edge values of A are then sampled to ensure that γ is

well represented as it deforms.

D.4.2 Reconnection. Vortex fila-
ment reconnections are prominent

events in bubble ring dynamics.

We adopt a variant of the method

of [Weißmann and Pinkall 2010]

to reconnect long antiparallel vortex filaments (see inset). In this

approach the reconnection criterion is a tradeoff between shorter

filament length and the physical energy required for the reconnec-

tion event. Weissmann and Pinkall check this criterion over all pairs

of edges i, j, whereas we check the same criterion over pairs of

curve segments (i, i + 1, . . . , i +mi ), (j, j + 1, . . . , j +mj ) with a fixed

physical length. This improves the discretization independence in

reconnection.

D.4.3 Droplet Formation. In the

case of ink filaments, the relatively

large viscosity eventually leads

to small circulation (Eq. (12b)). In

effect the diffusion term in the

Burgers’ equation plays less of a

regularizing role, resulting in the

thick segments cumulating at the

local minima of the height ⟨
д
|д | ,γ ⟩.

These segments rush down driven

by the term
16π 2νa2

256π 2ν 2+C2
д⊥ which is proportional to the thickness
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a2
. Beyond a threshold the fast normal motion of the curve forms a

new vortex ring (see inset).

In practice, we adopt a heuristic criterion to identify curve seg-

ments with large | Ûγ⊥ | by comparing it with the median value over

the filament. Each of these segments is converted into a new vortex

ring with an assigned circulation C proportional to the quantity

a | Ûγ⊥ | (which has a matching dimension) of the original filament.

The new vortex ring has thickness and radius (offset) proportional

to a of the original filament.

E STOKES FLOW FOR A DEFORMING BODY
We treat our filaments as full tori M1 ∈ R

3
changing shape and

position in time. This is captured by the normal velocity of ∂M1.

Since all vorticity is contained in M1 the velocity u in the exterior

M0 is fully determined by the Neumann data ⟨u,N ⟩ on ∂M1 induced

by Ûγ , the divu = 0 and curlu = 0 constraints, and the circulation C
around γ . The flow on the inside of the filament is assumed to be

Stokes [Childress 2009, Ch. 7] (see also [Lauga and Powers 2009] for

additional intuition). We therefore take u insideM1 to be the unique

Stokes flow compatible with the Dirichlet boundary data of u in the

exterior. We now prove that this flow exists and is unique. No doubt

this is a known fact, but we could not find a proof in the literature.

Lemma E.1 (Stokes flow as boundary value problem). For
any boundary data u∂ ∈ L2(∂M1;R3) with

∫
∂M1

⟨u∂,N ⟩dA = 0 (net
zero flux), the Stokes equation

∆u = gradw, divu = 0, u |∂M1
= u∂

has a unique weak solution u ∈W 1,2(M1;R3) with w ∈ L2(M1;R).
That is, there exists a unique u in the affine space Vu∂ B {u ∈
W 1,2(M1;R3) | divu = 0,u |∂M1

= u∂} such that

⎷curlu, curl ξ⌄ = ⎷w, div ξ⌄ for all ξ ∈W 1,2
0
(M1;R3), (29)

where ⎷·, ·⌄ is the L2 inner product onM1.

Note that the Stokes equation in weak form Eq. (29) is also the

Euler-Lagrange equation for minimizing the dissipation ∥ curlu∥2

under the constraints divu = 0 and u |∂M1
= u∂ .

Proof of Lemma E.1. Using the fact that div : W 1,2
0
(M1;R3) →

L2(M1;R) is surjective, a bounded linear functional f onW 1,2
0
(M1;R3)

vanishing on ker(div) implies that there is a bounded linear func-

tional д = ⎷w, ·⌄ on L2(M1;R) such that f = д ◦ div. Therefore it

is enough to show that there exists a unique u ∈ Vu∂ such that

⎷curlu, curl ξ⌄ = 0 for all ξ ∈ V0 BW 1,2
0
(M1;R3) ∩ ker(div).

Now, consider H = W 1,2(M1;R3) ∩ ker(div) in which V0 is a

subspace and Vu∂ is an affine space parallel to V0. Define an inner

product ⎷ξ ,η⌄H = ⎷curl ξ , curlη⌄ +
∫
∂M1

⟨ξ |∂M1
,η |∂M1

⟩dA, which
makes H into a Hilbert space. Here we used the fact that there is

no nontrivial harmonic field (ker(div) ∩ ker(curl)) that vanishes on

the boundary. Then by the Hilbert projection theorem there is a

unique orthogonal projectionu of 0 ∈ H onto the affine spaceVu∂ . In

particular u⊥V0 with respect to ⎷·, ·⌄H . That is, ⎷curlu, curl ξ⌄ = 0

for all ξ ∈ V0. □
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