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ABSTRACT

English
The theory of point vortex dynamics has existed since Kirchhoff ’s proposal in 1891 and is still

under development with connections to many fields in mathematics. As a strong simplification of
the concept of vorticity it excels in computational speed for vorticity based fluid simulations at
the cost of accuracy. Recent finding by Stefanella Boatto and Jair Koiller allowed the extension
of this theory on to closed surfaces. A comprehensive guide to point vortex dynamics on closed
surfaces with genus zero and vanishing total vorticity is presented here. Additionally fundamental
knowledge of fluid dynamics and surfaces are explained in a way to unify the theory of point
vortex dynamics of the plane, the sphere and closed surfaces together with implementation
details and supplement material.

Deutsch
Die Theorie der Punkt Vortex Dynamik existiert seit Kirchhoff ’s Einführung in 1891 und

wurde seitdem weiterentwickelt mit Verbindungen zu vielen Bereichen in der Mathematik. Als
starke simplifikation von Vortizität überragt das Modell durch seine Rechengeschwindigkeit für
Vortizität basierende Fluidsimulationen auf Kosten der Genauigkeit. Neue Entdeckungen von
Stefanella Boatto und Jair Koiller erlauben die Erweiterung dieser Theorie auf geschlossene
Oberflächen. Es wird eine verständliche Anleitung für Punkt Vortex Dynamik auf geschlossenen
Oberflächen mit genus null und verschwindender Gesamtvortizität präsentiert. Zusätzlich wer-
den Grundbegriffe von Fluiddynamik und Oberflächen erläutert auf eine Art die die Theorie der
Punkt Vortex Dynamik für die Ebene, die Sphäre und geschlossene Flächen vereint zusammen
mit Implementierungsdetails und Ergänzungsmaterial.
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1
INTRODUCTION

The main goal of this thesis is to document and derive rigorously the theory of point vortex

motion on closed surfaces while also explaining it’s implementation. Therefore we will

establish all the details of fluid dynamics necessary for our model of surface fluids at

the beginning and later introduce important concepts of discrete geometry. The final results

will be a real time fluid point vortex motion algorithm that takes advantage of recent finding

by Boatello [Dri15] on point vortex dynamics together with recent results in discrete geometry

processing algorithms to create conformal maps [KSBC12]. As of the time when this thesis was

written, no similar implementation has been published that presents such a vortex dynamics

fluid simulation on closed surfaces this streamlined.

After a short recollection of the history (chapter 1) and the basics of fluid dynamics (chapter 2)

we will explain the concept of vorticity and its use in fluid simulations and how these concepts can

be used on closed surfaces (chapter 3). Next we will introduce the reduction of vorticity through

point vortex dynamics (chapter 4) and work our way up from the planar case (chapter 5), to the

spherical case (chapter 6) and later to the arbitrary genus zero closed surfaces case (chapter 7).

All results archived in this thesis will be presented in the supplement material implemented

in the cinematic software called Houdini with full access to all the documented code with direct

execution options. A comprehensible path of the implementation steps and tricks is also given in

chapter 8.

1.1 History of Fluid Dynamics

Fluid mechanics might be one of the oldest topics in mathematics that are still today not fully

understood. The birth hour of this discipline came with Archimedes’s investigation on buoyancy in

his work Floating Bodies around around 250 BC. Much later famous researches such as Leonardo

1



CHAPTER 1. INTRODUCTION

da Vinci (1452 - 1519), Isaac Newton (1642 - 1726), Blaise Pascal (1623 - 1662), Daniel Bernoulli

(1700 - 1782), Leonhard Euler (1707 - 1783), Lord Kelvin (1824 - 1907), Hermann von Helmholtz

(1821 - 1894), Claude-Louis Navier (1785 - 1836) and George Gabriel Stokes (1819 - 1903) and

Simeon Denis Poisson (1781 - 1840) would all further pioneer into related topics with many of

them making contributions that are honored with their names in many theorems, equations and

operators through this thesis. It is astonishing too see how a one mathematical discipline can

receive such an incredible amount of attention and yet remain such a difficult problem to solve

with many publications every month attempting to shed more light on possible solutions. By no

means does this thesis claim to archived a major breakthrough, instead it is designed to shed a

clear light on the sub topic of point vortex dynamics on closed surfaces in such a way that anyone

can pick up the topic from here and have a guide on the simulation implementation as well.

Perhaps fluid mechanics and dynamics are such a popular topic due to its every day relevance

and thus familiar nature. The air we breath, the water we drink, the wind whistling past our

ears, the shower splashing on our skin, the rain drops covering our paths with puddles or the

great wave of Kanagawa (figure 1.1), those are all very familiar interactions with fluids that we

all know about. We develop an intuition for the laws of motion that fluids follow but this intuition

is often misleading and the closer we observe fluids the more complex they seem to become. This

complexity becomes apparent in the almost unpredictable nature of fluid motion due to its high

sensitivity to the initial conditions. Next time you place a teabag into a hot mug of water or when

you pour in milk into your coffee take a close look on the motion of the colors and you may loose

all hope in ever finding a method that can predict these complex patterns. It might take a god

such as Poseidon to understand fluids thoroughly.

Nevertheless, Leonhard Euler’s Principes generaux du mouvement des fluides [Eul57] pub-

lished in 1757 made a great leap forward by coining down the Euler equation (section 2.2 definition

4). This however is only a simplification on the Navier-Stokes equations (1.1) by Claude-Louis

Navier and George Gabriel Stokes that we will explain with more detail in section 2.1.

Figure 1.1: The great wave of Kanagawa by Katsushika Hokusai. Around 1829 in Japan. Public
domain.
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1.1. HISTORY OF FLUID DYNAMICS

(1.1)
∂

∂t
~u+ (~u ·∇)~u+ 1

ρ
∇p =~g+ν∆~u

∇·~u = 0

In essence, the study of fluid dynamics is the study of the Navier-Stokes equation. That is

plenty of work for generations to come and solving the Navier-Stokes existence and smoothness

problem could earn you a million US dollars by the Clay Mathematics Institute.

The development of mathematical tools together with many advances in computational

mathematics give us plenty of new opportunities to handle fluid dynamics. Essential to this

thesis will be Kirchhoff ’s description of vorticity through point vortex dynamics made back in

1891 [KHP91].

Figure 1.2: Me trying to understand fluids by looking at the Red Sea.
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CHAPTER 1. INTRODUCTION

1.2 Modern Fluid Dynamics

Luckily the age of computing has arrived and we can gain insights into fluid dynamics theories by

displaying their results. The bad news is that for the purpose of fluid simulations the demands for

memory and processing power are very high, thus dividing the theory into multiple applications.

A rigorous scientific fluid solver may work really well but at an incredible cost in computation that

makes it unusable for most activities but which nevertheless are essential when simulating tests

for turbines or planes. When asking our selfs what fluid methods to use we must always weight

the options according to their demands. An ocean surface for a movie will require more rigorous

methods when letting waves splash against cliffs, but If the only thing the water needs to do is to

shake a little with a boat then a surface based fluid will provide much higher quality results in

the same amount of computation time. There is no scale from high fidelity to high performance in

fluid methods. We can only hope to choose the right method for each demand. Section 2.3 of this

thesis will list a few fluid methods. In a simplified way you can think of some multi-dimensional

scale space where visual quality, low computational cost, and numerical stability compete with

each other and there might not be a way to bring them all together as in figure 1.3.

Yet sometimes we just want to have fluids and smoke for visual candy only and are ready

to sacrifice realism such as in video games or animations. Especially in video games a fast

performance is crucial and until up to this day many video games rely on 2d transparent texture

based fake smoke that often clips through walls. Absolutely disgraceful (figure 1.4). Of course,

the games such as Tom Clancy’s Rainbow Six Siege aim to create a smoke screen that is easy

to synchronized across the machines of each online player without dragging down too much

performance. It is kind of funny how this unrealistic element still persists in a video game where

the kinetic physics and destructibility are extremely impressive.

Visu
al

qu
ali

ty

Low computational cost

Num
erical accuracy

Figure 1.3: A simplification to illustrate the complexity of the demands made by fluid dynamics
applications.
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1.3. HISTORY OF VORTEX DYNAMICS

Figure 1.4: The effects of a smoke grenade next to a wall in the game Rainbow Six Siege seen
from two perspectives. The smoke clearly penetrates through the surface.

In common video games real time fluids have a hard time catching up with the real time

kinetic physics that archived a mayor break through with the introduction of the source game

engine by valve in 2004. Kinetic physics have been integrated into gameplay quite often and

perhaps one day a functional smoke simulation will spice up the gameplay just as much. The

current two dimensional smoke texture method won’t hold up with the 3D demands especially

with VR headsets. A real time smoke simulation of the future has to be able to run fast enough to

please the high frame rates needed in VR to avoid motion sickness.

We mentioned the brief note of smoke in video games due to the assumptions that we are

ready to make in this thesis in order to archive a fast performance with point vortex dynamics.

In essence point vortices are a model to express the motion of a fluids by sampling the vorticity

and only focusing on the whirls of the fluid and their motion. The aim of this thesis is to explain

this model in detail and to implement it onto closed surfaces to then observe its value for visual

effects. The highlighted question is if this way of simulating fluids still looks good.

1.3 History of Vortex Dynamics

When seeing the fluid motion as a velocity vector field, vorticity describes the circulation of that

said velocity field and is defined by the equation

~ω=∇×~u

.

The properties of vorticity have gained increasing attention in the past century due to its

nature to highlight turbulence where the most complex motion happens especially as they were

5



CHAPTER 1. INTRODUCTION

revealed by simulations and more accurate experiments. It is precisely the area of high vorticity

where the fluid twists the most that is the most difficult to describe and these areas have

significant effects on the motion of any fluid as the fluid around circulations moves much faster.

A detailed description of vorticity will be provided in section 2.4.

Kirchhoff ’s introduction of point vortices equation in a plane in his 1891 lecture [KHP91]

started what we will work on here. We will explain its details rigorously in chapter 4.

Especially the introduction of the vorticity equation as derived from the Navier-Stokes

equations gives us reasons to believe that we can model fluids by their vorticity alone. This

vorticity equation will be explained in section 2.5. Jean-Baptiste Biot (1774 - 1862) and Felix

Savart (1791 - 1841) introduced the Biot-Savart integral and thus paved the way to approximate

the velocity field responsible for a given vorticity field which we will explain in section 3.4.

In 1992 P.G. Saffman published Vortex Dynamics collecting the essentials of different ap-

proaches to describing vorticity [Saf92] (in chapter. 2). The two most important descriptions are

the one of vortex sheets, and line vortices. Vortex sheets are an attempt to model the vorticity

with a two dimensional sheets while line vortices concentrate the fluid vorticity inside a single

curve. These methods and the additional usage of vortex tubes, filaments and points can be found

in [BM06] and are still active areas of research.

In 2007 Elcott et. al [ETK+07] published a discrete exterior calculus (DEC) surface fluid

model that preserves discrete circulation thus avoiding numerical diffusion of vorticity. This one

is especially interesting as we are too taking advantage of DEC methods in our implementation.

Azencot et. al, 2014 [AWO+14] also published a DEC vorticity based method to simulate surface

fluids on triangulated meshes. Their method is efficient, time-reversible and conserves vorticity

while giving back natural phenomena. We do not challenge this method as it requires to track

the vorticity on every static point of the mesh which we can avoid using selected point vortices

that can be anywhere on the surface for the benefit of computation speed.

The topic of point vortex dynamics on closed surfaces today is pioneered by Stefanella Boatto,

Jair Kolier and David Gerard Dritschel. In 2008 their publication of Vortices on closed surfaces

[BK08] is a solid source to get into the topic and in 2015 a paper with the same name was

published [BK15] which contains the essential theory that allows us to implement this thesis’

point vortex dynamics and which has also been presented at [Dri15]. In 2016 Boatto et. al moved

on to establish the relations between N-point vortex dynamics and N-point gravity dynamics

[Sch16]. We also note that in 2011 A. Regis published vortex dynamics for the triaxial ellipsoid

[Reg11] as his Ph.D. thesis.

1.4 Supplement Material Software

All results archived in this thesis will be presented in the supplement material implemented in

Houdini with full access to all the documented code with instant execution options (after making

6



1.4. SUPPLEMENT MATERIAL SOFTWARE

sure scipy is installed). A comprehensible path of the implementation steps (figure 1.5) and tricks

is also given in chapter 8. The files can be found on the following git site:

https://github.com/marcelpadilla/Point-Vortex-Dynamics-on-Closed-Surfaces.git.

Figure 1.5: Images created using the supplement material.
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2
FLUID DYNAMICS AND THE VORTICITY EQUATION

This chapter will establish the fundamentals of fluid dynamics to create a solid mathematical

playground for the reader to follow this thesis.

2.1 The Navier-Stokes Equations

You can’t talk about fluid dynamics without it’s number one differential equation that has supplied

mathematicians with countless jobs all around the world. This is of course the incompressible

Navier-Stokes equation that we will quickly define in here in its most general form

Definition 1 (Incompressible Navier-Stokes equations). The flow of a fluid inside a given

container is governed by the solutions to the following differential equations:

∂

∂t
~u+ (~u ·∇)~u+ 1

ρ
∇p =~g+ν∆~u

∇·~u = 0

Here t denotes time, ~u the velocity field, ρ the density field, p the pressure field, ~g the

external forces such as gravity, ν the viscosity, ∇ the gradient operator, ∇· the divergence

operator and ∆=∇·∇ the Laplacian. Note that these are 4 differential equations at once. The

first line is called the momentum equation while the second one is called the incompressibility

condition.

Mathematicians can’t do everything (surprisingly) and solving these equations analytically

is insane and numerically/computationally costly and difficult. Especially the incorporation of

boundaries in the fluid will make everything much worse. However, boundary conditions are

9



CHAPTER 2. FLUID DYNAMICS AND THE VORTICITY EQUATION

something we can avoid talking about since closed surfaces, the sphere and the plane have no

boundaries.

Let us not forget to define what incompressible flow actually means. Physically it describes the

local property of density conversation in small parcels of fluid. Here comes the formal definition:

Definition 2 (Incompressible flow). A velocity vector field ~u with a density scalar field ρ of

a fluid is said to be incompressible if the material derivative of ρ vanishes, i.e.

(2.1)
D
Dt

ρ = ∂

∂t
ρ+~u ·∇ρ = 0

To get a feel for the Navier-Stokes equations we will have a quick look at their derivation.

Surprisingly this only depends on basic laws of physics that we will quickly recall from [Bri15].

Note that the main statement of this thesis does not need all of the details that we will now

establish but it really helps to go through this in order to comprehend the assumptions that we

make to reach our goal with the Euler equations (section 2.2).

Newton’s countlessly cited first equation of motion will be the starting point of it all. Here

we will now imagine a blob of fluid with mass m and volume V inside our container (figure 2.1)

and ask ourselfs: what forces act on that piece of fluid? For our blob, the change in momentum is

proportional to the total force and our mass is constant which is why we can write:

(2.2) m
D
Dt
~u = ~F

How can we express ~F? The basic external force that we all submit to is gravity m~g and we

know that it should appear in ~F.

Next we should think about pressure p. Pressure is very non-trivial and will be explained

later as a volume preserving force connected to the divergence free condition of the Navier-Stokes

equation. Pressure is a scalar value that will consistently create a force to balance its values

across the fluid. We know that the gradient of a scalar function points in the direction of the

m,V

~F

Figure 2.1: Let’s image a piece of fluid with mass m and volume V inside a fluid. What forces ~F
apply to it? We ignore any boundary effects and pretend to live in an infinite water container.

10



2.1. THE NAVIER-STOKES EQUATIONS

steepest ascent, which is why our pressure force must look something like −∇p in order to fight

it’s deviation from zero. This is proportional to the Volume size which is why we multiply gradient

∇p with the blob volume V to have our force −V∇p.

Next want to mention the viscous force. Viscosity describes the amount of friction within the

fluid i.e. the fluid blobs have with each other. It can be seen as a force that attempts the balance

out the velocities of one fluid blob to the velocities in its surroundings. In fact, it tries to minimize

the differences in velocity similarly like the heat flow attempts to balance out the temperature

in a solid. This way the mathematical expression involving viscosity comes with our beloved

Laplacian ∆ that will receive a lot of attention in the later parts of this thesis (chapter 3, not in

the context of viscosity). The viscous force also needs to be multiplied by the blob volume V and

by the dynamic viscosity coefficient µ that describes the amount of friction. The Resulting force is

Vµ∆~u.

Fluid force: Gravity (external) Pressure Viscous

Expression: +m~g −V∇p +Vµ∆~u

Collecting all the forces from the above table gives us:

(2.3) m
D
Dt
~u = m~g−V∇p+Vµ∆~u

Now we can finally get to jump from the blob case into the continuous case by dividing by the

mass and taking the limit. This will introduce the density ρ by the limit m/V −→ ρ.

(2.4)
D
Dt
~u =~g− 1

ρ
∇p+ µ

ρ
∆~u

Note that the material derivative can be written as

(2.5)
D
Dt
~u = ∂

∂t
~u+ (~u ·∇)~u

and that the kinematic viscosity ν equals µ
ρ

. Now we just need a tiny little rearranging work

to get to the bigger one of the Navier-Stokes equations.

(2.6)
∂

∂t
~u+ (~u ·∇)~u+ 1

ρ
∇p =~g+ν∆~u

But that is only half of the story and now we want to show the origin of the incompressibility

condition ∇ ·~u = 0 and how it relates to the incompressible flow definition other than just by

its name. As with many other derivations in physics we start out with properties of mass

and momentum. The density function ρ determines the mass given a volume and the ρ~u its

11



CHAPTER 2. FLUID DYNAMICS AND THE VORTICITY EQUATION

momentum. The integral of these functions over the a sub domain Ω of the fluid results in the

total mass and total momentum values in Ω:

(2.7) M =
Ñ

Ω
ρ, ~P =

Ñ
Ω
ρ~u

It is important to see that the equations (2.7) compute the mass and momentum of any

subset Ω of the entire fluid domain. Integrating on the whole fluid would give us constant values

corresponding to the conservation of mass and momentum principles. On any subset Ω the

amount of mass inside changes by the amount of fluid moving in or out of the boundaries of ω. In

mathematical terms this is expressed as:

(2.8)
∂

∂t
M = ∂

∂t

Ñ
Ω
ρ =

Ñ
Ω

∂

∂t
ρ =−

Ï
∂Ω
ρ~u ·~n

where ~n represents the outward pointing normal of the boundary ∂Ω. Equations like this

instantly trigger mathematicians to try out Stoke’s theorem resulting in:

(2.9)
Ñ

Ω

∂

∂t
ρ =−

Ñ
Ω
∇· (ρ~u) ⇔

Ñ
Ω

∂

∂t
ρ+∇· (ρ~u)= 0

Equation (2.9) has been established using Ω without placing any demands on the set. We

conclude from this the equation

(2.10)
∂

∂t
ρ+∇· (ρ~u)= 0

We refer to equation (2.10) as the continuity equation. This is the spot where we can smoothly

smuggle in our definition of an incompressible flow, namely the disappearance of the material

derivative of the density ρ, D
Dtρ = ∂

∂tρ+~u ·∇ρ = 0. Subtracting this from equation (2.10) leads to

the incompressibility condition that we all know and love:

∂

∂t
ρ+∇· (ρ~u)−

(
∂

∂t
ρ+~u ·∇ρ

)
= 0

∇· (ρ~u)−~u ·∇ρ = 0

~u ·∇ρ+ρ∇·~u−~u ·∇ρ = 0

ρ∇·~u = 0

Now we can just divide by the non-zero density to see the last bit that we needed for the full

Navier-Stokes equation.

12



2.2. THE EULER EQUATIONS

(2.11) ∇·~u = 0

The incompressibility equation (2.11) is a very important condition that many fluid simula-

tions attempt to preserve. As seen in this derivation, a violation of the incompressibility leads

to a change in mass of the fluid. Most of the time we will refer to this as the incompressibility

condition and ~u is then called divergence free. We should really honor it with its own corollary.

Corollary 3 (Divergence free condition). A vector field ~u of a fluid flow satisfying the

incompressibility condition D
Dtρ = ∂

∂tρ+~u ·∇ρ = 0 for it’s density ρ consequently has to fulfill

the divergence free condition:

(2.12) ∇·~u = 0

If so, ~u is called divergence free.

Fluid methods that sacrifice accuracy of the incompressibility condition can be funny. Imagine

stirring a resting fluid and suddenly having more fluid than before. We will explain more about

the incompressibility assumption in section 2.2.

2.2 The Euler Equations

Let’s have a closer look at what we call the Euler equation. It is less general than the Navier-

Stokes equation but comes with assumptions that we too make to our fluid. In the nutshell,

the Euler equation is just the Navier-stokes equation without viscosity which turns the second-

order partial differential equation into a first-order partial differential equation. In this section

we will explain the Euler equations and our assumptions on inviscidity, mass uniformity and

incompressibility. The Euler equations are more important to us in this thesis but having

established the Navier-Stokes equation is needed to understand the assumptions we make on the

fluid.

Definition 4 (Incompressible Euler Equations). The motion of an incompressible, inviscid

flow with uniform density inside a container without external forces is determined by the

following equations:

D
Dt
~u =−∇p

∇·~u = 0

Here ~u denotes the velocity field and p the pressure.

13
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Note that these are again four partial differential equations at once as the first line is

expressed as a vector. We have already mentioned the importance of incompressibility in definition

2 on page 10.

No extra effort is needed to derive these equations since their derivation is equivalent to

the one of the Navier-Stokes equation done in section 2.1. The divergence free condition ∇·~u = 0

is the same as in the Navier-Stokes equations and has the exact same interpretations of mass

preservation. Later we will see that the pressure force ∇p is precisely the forced needed inside

the fluid in order to maintain it divergence free and thus preserve its volume. This last bit is a

purely mathematical interpretation of pressure.

We have not yet discussed the relevance of incompressibility. As the word suggests, it describes

that a fluid is unable to compress it’s density. This means that you can not squish a container with

a certain fluid together. However, common knowledge of fluids state that gases can be compressed

into fire extinguishers and that in the water and air sounds are transmitted through compression

waves. Does this make working with incompressible fluids a pointless endeavor?

Of course not. The great news is that the effects of fluid compression is minimal in reality

and have an negligible on the overall motion of the fluid. True, fluid compression is needed to

simulate the acoustics but that is not what we are after and an extremely expensive goal to

reach. Having incompressible fluids makes our life much easier and focuses our resources more

efficiently for the fluid motion. Even if we are not only after visuals, dropping compressibility is a

very common procedure.

And as a side note, water and air are both very difficult to compress. It would require very fast

motion such as in blasts or strong pumps to get some notable effect compared to incompressible

fluid flows. The study of fluids with these effects is called compressible flow.

Ok, now that we talked through incompressibility we can now talk about our assumption

of uniform constant density. This again is related to the incompressibility we set up earlier. We

assume our fluids, for example air and water, to enter our simulation without any biases in the

initial compression, meaning that we have the same density everywhere and that we want that

density to remain constant. For water this is naturally negligible anyway but for gases this is

less simple. However, as we are dealing with small scale gases we can still drop this requirement.

Let us now talk about the assumption on our fluid to be invicid next. What are the conse-

quences of dropping viscosity? Luckily, water has pretty low viscosity and air even less. The

effects however depend very much on the scale of the operation. The funny thing about viscosity

in particular is that even if you remove it in theory from the fluid equations, many numerical

errors can later be interpreted as a viscous effect. This however won’t be the case with point

vortices as we will see later.

14
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2.3 Notes on Common Fluid Methods

The art of computational fluid mechanics is broad and diverse and all basically attempt to solve

the same differential equations. We have briefly mentioned the history of fluid dynamics and will

now mention some main computational techniques that have been developed since the invention

of computers.

In 1969 P. McCormack developed a fluid method that is now named the McCormack method

which is still popular as it is easy to understand and to implement [McC12] and still represented

in recent literature for its ease to explain and for benchmarking [Bri15], [CKP+16]. It is a

second-order finite difference method that dissects the fluid container into a grid (figure 2.2).

Common fluid methods used today are collected inside a survey made in 2002 [LMW02] from

Hans Petter Langtangen (1962 - 2016) et. al. Common numerical approaches in computational

fluid dynamics typically discretize the fluid equations through Finite Volumes (FVM), Finite

Elements (FEM), Finite Difference (FDM) or Discrete Exterior Calculus (DEC) [ETK+07] methods

to then compute the fluid or vortex flow directly. Please be advised not to mix up point vortices

with vortex particles as the later one is for 3D fluid simulations [SRF05].

Through the above mentioned survey you will notice that the assumption made in this thesis,

modeling vorticity as points, is a very strong (rough) assumption. The upside is that it discretizes

vorticity rather than discretizing space itself as in the common methods. With many many point

vortices you can approximate any vorticity fields. Apart from that point vortices have been named

a classical mathematics playground [Are07] for linking a large number of areas of classical

mathematics.

~uy

~ux

~uz

p

Figure 2.2: One cell of MacCormack’s grid. Pressure is in the cell center while velocity is noted on
the surfaces of neighboring cells.
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2.4 Vorticity of Fluids

Vorticity is express as the curl of the velocity field.

(2.13) ~ω=∇×~u

But what does this mean? In this section we want to give a better understanding of the idea

behind vorticity. This will help to better understand the rest of this thesis. We will illustrate

vorticity and the curl operator in 2- and 3-dimensions. Let us first clarify the basic definitions.

Definition 5 (Cross Product). Let u and v be vectors in R3. The cross product between u and

v is defined as:

(2.14) ~u×~v =


ux

uy

uz

×


vx

vy

vz

=


uyvz −uzvy

uzvx −uxvz

uxvy −uyvx



Definition 6 (Curl). Let u be a vector field on the domain M ⊂ R3. The curl of the vector

field u is defined as:

(2.15) curl~u =∇×~u =


∂
∂x
∂
∂y
∂
∂z

×


ux

uy

uz

uz =


∂
∂y uz − ∂

∂z uy
∂
∂z ux − ∂

∂x uz
∂
∂x uy − ∂

∂y ux


As we can see the curl’s definition is tied to its dimension being three. In two dimensions the

curl operator must be redefined. In order to reasonably define this we need to understand the

curl operator first.

For the sake of a thought experiment let us imagine a 3D vector field ~u = (ux,uy,uz) where

we assume that uz = 0, i.e. all motion remains in the x-y-planes (this just helps to visualize, the

math won’t need uz = 0). One such plane could for example be the flow of fluid on the surface of a

lake. Let us walk to that lake on a beautiful day and throw a wooden log into the flow. Now we

want to observe this log’s behavior in the flow as shown in figure 2.3.

We know that the log will move along the flow lines, but that only captures the translational

change. In real life our log will rotate as well and vorticity will precisely capture this rotation. To

understand this we need to become one with the wooden log. From the frame of perspective of the

log we let~ν ∈ R3 represent the rotation vector.~ν exists for sure but we have not yet expressed

it mathematically. When switching from the inertial frame velocity ~uI to the rotational frame

velocity ~uR the following equation must hold:

(2.16) ~uI =~uR +~ν×~x
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~u

x

y

Figure 2.3: A infinitesimally small log flowing happily in a lake. The curved arrows show the flow
lines of the lake surface. How will this log rotate?

Let’s smash the curl operator against this system under the assumption that the wooden log

is at rest on a spot in the flow i.e. ~uR = 0, grad~ν= 0 and use this lemma:

Lemma 7. For vector fields a and b we have

(2.17) ∇× (a×b)= (∇·b)a+ (b ·∇)a− (∇·a)b− (a ·∇)b

This is what happens:

∇×~uI =∇× (~ν×~x)

= (∇·~x)~ν+ (~x ·∇)~ν− (∇·~ν)~x− (~ν ·∇)~x

= (3)~ν+0− (0)~x− (νx
∂

∂x
+νy

∂

∂y
+νz

∂

∂z
)~x

= 3~ν−~ν
= 2~ν

This shows that the curl operator has the ability to expose the rotation~ν of the object in the

flow at a given spot. Not only are we given the axis of rotation, but also the rotational velocity can

be extracted with this curl. Physically, this rotation occurs due to the different rate of changes of

the velocity along each side of a flow line.

The transition to the 2D surface case with tangential velocity field is now very simple. The

only possible axis of rotation is the surface normal ~n, thus we know that there must be some

scalar ω such that

(2.18) ~ω=∇×~u = 2~ν=ω~n

Since 〈~n,~n〉 = 1 we can now define the 2D curl using the above relation.
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Definition 8 (2D Curl). Let ~u be a two dimensional vector field on a surface M with normal

vectors ~n. The curl of ~u is defined as:

(2.19) curl~u = 〈~n,~ω〉 = 〈~n,∇×~u〉

with the euclidean product 〈 , 〉.

As you can see, the 2D curl from definition 8 is a scalar function, which might be a bit

surprising given that the three dimensional curl returns a 3D vector. This is fine because in 2D

there is only one possible axis of rotation whereas in 3D you posses three.

The rotation is proportional to the scalar value of the vorticity and clockwise for positive

values. Vector fields in 2D and 3D without vorticity, i.e. curl~u ≡ 0, are called irrotational. In the

plane R2 embedded in R3 for example we have ~n = (0,0,1)T and thus

curl~u = ∂uy

∂x
− ∂ux

∂y

Take a look at the very basic vector fields in figures 2.4, 2.5 and 2.6 to familiarize yourself

with them.

−3 −2 −1 0 1 2 3

−2

0

2

Figure 2.4: The vector field (−y, x) has vorticity ∂
∂x x− ∂

∂y (−y)= 2 everywhere. An object flowing
along this field would rotate with a constant angular velocity in this flow.
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−3 −2 −1 0 1 2 3

−2

0

2

Figure 2.5: Here we see the gravitational potential gradient field ∇ f =∇1
r . Since curl∇ f ≡ 0 any

gradient field is irrotational. Objects in this field will not rotate.

−3 −2 −1 0 1 2 3

−2

0

2

Figure 2.6: Here we see the sum of ∇1
r and (−y, x). The total vorticity is the sum of the separate

vorticities and thus constant with ω= 2.

2.5 The Vorticity Equation

This thesis is all about point vortices and thus vortex methods, but all the fluid equations we

have seen so far are only about velocity fields and don’t even mention our beloved vorticity ~ω.

The time has come to change this. We can play around with the differential equations until we

end up with the vorticity equation that focuses on ~ω instead of ~u. For this we will orient ourself

according to [Poz11].

One useful lemma right now is:
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Lemma 9. For vector fields ~u and ~ω :=∇×~u we have

(2.20) ∇× ( (~u ·∇)~u )= (~u ·∇)~ω− (~ω ·∇)~u

Right now we just want to drop the curl operator on the entire incompressible Euler equations

and hope to catch a few useful terms involving vorticity. So the main part of the incompressible

Euler equations goes like this:

D
Dt
~u = ∂

∂t
~u+ (~u ·∇)~u =−∇p

Remember that the curl operator acts on x, y, z and not on time t. This is why we can

interchange the curl operator with the time differentiation. If we unleash the curl operator this

happens:

∇×
(
∂

∂t
~u+~u ·∇~u

)
=∇× (−∇p)

∇× ∂

∂t
~u+∇× (~u ·∇~u)=−∇×∇p

∂

∂t
∇×~u+~u ·∇~ω−~ω ·∇~u =−0

∂

∂t
~ω+~u ·∇~ω−~ω ·∇~u = 0

D
Dt
~ω−~ω ·∇~u = 0

Which leaves the following important message to take home:

(2.21)
D
Dt
~ω= (~ω ·∇)~u

This equation can also be re-written using the Lie derivative Lu~ω :=~u ·∇~ω−~ω ·∇~u as

(2.22)
∂

∂t
~ω+~u ·∇~ω−~ω ·∇~u = ∂

∂t
~ω+Lu~ω= 0

According to [ETK+07] this equation then states that vorticity is simply advected along the

fluid flow. This is an extremely important statement as it is fundamental to the justification of

the point vortex dynamics. In essence we will use the point vortices to approximate vorticity to

compute the velocity field and then use this velocity field to advect the point vortices (see figure

2.7.
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Point Vortex Model

VorticityVelocity Field

~u ~ω

p1, . . . , pn

ad
ve

ct
io

n approxim
ate

compute

Figure 2.7: The path the point vortex model will take in the simulations.
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3
SURFACE FLUIDS

By now we established a basic understanding of fluids but there is still a necessity to be more

specific about the term surface fluids. What kind of surfaces are we exactly talking about and

what basic knowledge of them do we need to recall to complete the purpose of this thesis? Apart

from explaining how to constrain fluids to closed surfaces we will also clarify what the Green’s

functions and the stream functions are.

3.1 Surface Fluids

As the name of this thesis suggests, we only work with closed surfaces, in our final result meaning

genus zero surfaces in R3 without any boundary. Most of the theory here still applies to

surfaces of any genus without boundary but the final theorem works only on genus zero surfaces.

Take a look at figure 3.1 first.

Definition 10 (Closed Surface in R3). A smooth closed surface is a 2-dimensional manifold

in R3 without boundary. It is a set M ⊂ R3 such that for every point p ∈ M there exists an

ε> 0 such that the intersection of the ε-sphere Bε(p) := {x ∈R3 : |x− p| < ε} around p with M

can be smoothly mapped to an open set in R2.

We only care about smooth surfaces here. Let’s specify genus zero to highlight what we are

working with in the final result.

Definition 11 (Closed Surface in R3 with Genus Zero). A closed surface has genus zero if it

can be smoothly deformed into a sphere. i.e. it has no handles and no boundary.

The boundarylessness is particularly important as boundaries can turn the relation between

a mathematician and his fluid simulations into a sour one quickly. The effects a boundary has on
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S2 ⊂R3 M ⊂R3 T ⊂R3

Figure 3.1: In our model, we will pay close attention to the sphere S2 (left) and on any arbitrary
closed surface M ⊂R3 of genus zero (center). The torus (right) has genus 1 and will thus not be
used in the final result.

the fluid motion is enormous unless the container is extremely huge. To respect these effects one

would have to add a bunch of extra work into a solver. A taste of what this means for the planar

point vortices in R2 can be found in [Poz11]( section 11.2.5 ). It involves ghost point vortices

behind the boundary. Indeed scary.

Closed surfaces don’t have boundaries and so we can skip a chapter that would just be about

boundary conditions. Closed surfaces of genus zero by the way are the next best boundaryless

thing apart from the infinite plane and periodic plane segments. An example of a surface fluid

can be the atmosphere. Lets go more into detail and define the tangent planes.

Definition 12 (Tangent Space). For a surface M ⊂R3, TpM denotes the tangent space of M

at point p ∈ M. It is the set of all derivatives at p of smooth curves on the surface passing

through p.

TpM := { γ′(0) : γ : (−1,1) −→ M smooth curve with γ(0)= p }

Define TM := {TpM : p ∈ M}. Figure 3.2 shows TpM in an example. It is also important to

explicitly mention how our vector fields are affected by the transition to surfaces. We expect to

not spill any fluid off the surface so it becomes essential that at any point p on the surface M the

velocity vector ~up must be in the tangent plane TpM of that point.
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M ⊂R3

TpM

p

Figure 3.2: Tangent field TpM on a point p ∈ M

Definition 13 (Tangent Vector fields on surfaces). A vector field ~u on a surface M is tangen-

tial to M if each vector lies is the tangent plane of its point.

p 7→~u(p) ∈ TpM

Good news is that we do not have to redefine the divergence, gradient and curl for these

surfaces. A surface fluid is now simply a tangent vector field ~u on a surface M that solves the

Navier-Stokes equations on M. Once ~u is in that tangent space, its flow will remain trapped in

the tangent space forever. No escape. When ever we talk about ~u being the velocity field of the

fluid we will always talk about a tangent vector field. The normal vectors ~n : M −→ R3 are an

example of a non tangent vector field on M.

3.2 Green’s Functions on Surfaces

In section 3.4 we will make use of Green’s functions in order to get a velocity field ~u with a

given vorticity ω. Here we want to establish an exact definition and exact expressions for Green’s

functions for the two most important cases that we will cover in the thesis: for the plane and for

the unit sphere S2. As a reminder:
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Definition 14 (Green’s function). Let ∆ be the Laplacian of the manifold M acting on x and

δ the Dirac-delta function on M, then we call

G : M2 \{(x, x) : x ∈ M} −→ R

(x, y) 7→ G(x, y)

the Green’s function on M if it solves the following equation:

(3.1) ∆xG(x, y)= δ(x− y)

There is not just one Green’s function because whenever we pick a differently shaped M the

Laplacian changes too. In general it is difficult to compute Green’s function for arbitrary shapes

but we will see how much we can deduce by only knowing the Green’s functions for the plane and

for the sphere as take from [Kim99].

Proposition 15 (Green’s function in the 2D plane). The Green’s function in the 2D plane is

given by

(3.2) G(x, y)=− 1
2π

ln(|x− y|)

Proposition 16 (Green’s function on S2). The Green’s function on S2 is given by

(3.3) G(x, y)=− 1
2π

ln
(

sin
(

1
2

d(x, y)
) )

where d(x, y)= acos(x · y) is the euclidean distance between x and y on S2.

To verify the correctness of the above equation one only has to make a few integrations around

small neighborhoods to see if ∆G(x, y) behaves just like δ does.

3.3 Stream Functions

Knowing the stream function of your velocity field makes describing the flow of the fluid much

easier. We introduce stream functions as they are one of the many great things we can compute

from the point vortex model. Finding stream functions is usually a hard endeavor but we will

later reveal how the point vortex model creates a trivial link between Green’s functions and

stream functions.
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Definition 17 (3D Stream Function). For a fluid flow velocity field ~u the vector field ~ψ :

M −→ R3 is called the stream function if:

(3.4) ~u =∇×~ψ

For 2D the stream function is a scalar potential and thus

Definition 18 (2D Stream Function). For a fluid flow velocity field~u on the euclidean surface

M ⊂R3 the scalar function ψ : M −→ R is called the stream function if:

(3.5) ~u =~n×∇ψ

where ~n is the surface normal.

This means that solving for the stream function of the flow also gives us the velocity field ~u

and thus solves the fluid dynamic problem just as well. Equation (3.5) is a simplification of the

vector potential version since in 2D we only have one orientation to care about. Note that stream

functions come with inconsistent sign conventions and that the 3D and 2D stream function

definition actually have opposite sign when trying to link them. More about this later in section

3.6 remark 1.

In the 2D case, the gradient ∇ψ points towards the direction of greatest ascend and applying

a 90 degree rotation to that direction in the 2D setting using ~n× ( ) means that ~u follows the lines

where ψ remains constant. In other words: a passive points following the vector field ~u will move

along the level lines of ψ. Figure 3.3 illustrates the stream lines in an example vector field. Such

a neat interpretation is not possible for 3D stream functions. Section 3.8 Symplectic Manifolds

and Symplectic Gradients will describe this in much more detail.

x

y

Figure 3.3: The level lines of the stream function of a fluid flow section with objects. A white table
tennis ball dropped into the stream moves along one of these lines if the flow is constant.
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3.4 Getting Velocity from Vorticity

How exactly can we estimate the velocity from the vorticity?. The following section will explain

how to find a corresponding ~u given a ~ω and will play a key role in the later derivation of the

results of this thesis to move the point vortices. Vorticity and velocity are related by the following

equation

~ω=∇×~u

It is not so obvious that given any vorticity field ~ω that we can find a corresponding ~u such

that this relation holds true. Even worse, a common differential identity is that ∇×∇ f = 0 for

any smooth scalar field f , consequently meaning that given one solution ~u to equation 3.4 we can

add a gradient ∇ f of any scalar field f and obtain a new solution.

f : M −→R , ∇×~u =~ω

⇒ ∇× (~u+∇ f )=∇×~u+
=0︷ ︸︸ ︷

∇×∇ f =~ω

If we want to gain serious results from fluids dynamics based on the vorticity we obviously

need to come up with a good answer on how to gain a sensible velocity from the vorticity that is

unique. For this we need to derive the existence of a solution first and then we need to eliminate

the non-uniqueness of the velocity field.

One way to find a suitable velocity field ~u given a vorticity field ~ω is through searching for a

minimizer of the difference.

argmin
~u

∫ ∫ ∫
||∇×~u−~ω||2

Let us try to solve this like an energy minimization problem. Lets take ~p to be a vector field

that decays to zero the further away you go from the origin and s a parameter that controls the

amount of influence ~p has on the output. The energy of ~u+ s~p then is

g(s) :=
∫ ∫ ∫

||∇× (~u+ s~p)−~ω||2

If we assume a given choice of ~u to fulfill ∇×~u =~ω then it would have to be a minimizer of

this energy at s = 0, i.e. g′(s)= 0. This argument can be used to start deriving conditions that ~u

must complete. Let us first write the g into a more useful form.

g(s)=
Ñ

(∇× (~u+ s~p)−~ω) · (∇× (~u+ s~p)−~ω)

=
Ñ

||∇×~u−~ω||2 +2(∇×~u−~ω) · (∇×~p)s+||∇×~p||2s2
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As we can see, the god of mathematics blessed us with a simple quadratic function. For this

quadratic the minima condition for s = 0 s.t. g′(s)= 0 is fulfilled if

0=
Ñ

2(∇×~u−~ω) · (∇×~p)

=−2
Ñ

∇× (∇×~u−~ω) ·~p = 0

Where in the last bit we used integration by parts with the curl operators.

Lemma 19 (Curl Integration by Parts). For vector fields~x,~y on a manifold without boundary:∫
~x ·∇×~y=−

∫
∇×~x ·~y

If ~u fulfills ∇×~u =~ω then
Ð ∇× (∇×~u−~ω) ·~p = 0 is true for any function ~p (that decays to

zero away from the origin). Thus we can conclude that the following expression has to equal zero

(3.6) ∇× (∇×~u−~ω)= 0⇔∇×∇×~u =∇×~ω

This relation seems rather obvious but remember that we had wished to start the derivation

using a minimization of an energy. We now know that solving ∇×∇×~u =∇×~ω gives us a solution.

Another differential identity states that

Lemma 20 (Double Curl). For any smooth vector field ~u

(3.7) ∇×∇×~u =−∇·∇~u+∇(∇·~u)

Thus we established that for ∇×~u =~ω to be true we require the condition

(3.8) −∇·∇~u+∇(∇·~u)=∇×~ω

This is where the magic happens. Remember our incompressibility condition (definition 2)? In

a nutshell it is the volume preservation condition that turns out to be just the divergence-free

condition as we have derived earlier in section 2.1. If our solution ~u derived from the given

vorticity ~ω is supposed to model an incompressible fluid we must require it also to solve the

incompressibility equation ∇·~u = 0. This means that right now we can also use ∇·~u = 0 in our

derivation of a solution ~u, however we must not forget to later check if this condition is actually

true with the solution we end up with (done in section 3.5). Using this simplifies our equation to

(3.9) ∇·∇~u =∆~u =−∇×~ω
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Surprise surprise! The Poisson equation sneaked into our problem! We welcome this very

much as there is a lot of theory related to solving Poisson equations. One specific way of solving

the Poisson equation involves the use of the Green’s functions and this one will be the most

helpful in our context.

The Green’s function is defined section 14 such that:

(3.10) G : M2 \{(x, x) : x ∈ M}→R, (x, y) 7→G(x, y), ∆xG(x, y)= δ(x− y)

This allows us to express solutions of the Poisson equation in terms of combinations of

functions G(x, p) with as many p from the surface M as we need.

Proposition 21 (Biot-Savart Law). Given a vorticity ~ω, a solution to the equation ∆~u =
−∇×~ω can be given as

(3.11) ~u(x)=
∫

M
∇pG(x, p)×~ω(p) dp

Proof. First we apply basic integration by parts to the right hand side to replace

∇pG(x, p)×~ω(p)=−G(x, p) ∇p ×~ω(p)

Now let us just verify the solution by smacking ∆x to it.

∆x~u(x)=∆x

∫
M
∇pG(x, p)×~ω(p) dp

=∆x −
∫

M
G(x, p) ∇p ×~ω(p) dp

=−
∫

M
∆xG(x, p) ∇p ×~ω(p) dp

=−
∫

M
δ(x− p) ∇p ×~ω(p) dp

=−∇×~ω(x)

�

Thus we have shown a method to compute the velocity through vorticity using the so called

Biot-Savart law[Bri15]. The demand for the divergence free condition removed some of the

non-uniqueness. For a scalar function f

∇× (~u+∇ f )=~ω
∇· (~u+∇ f )= 0=⇒∆ f = 0

Thus only harmonic functions f (definition: ∆ f = 0) remain as a degree of freedom for velocity

fields. In the the next section however we will express ~u =∇×~ψ in terms of the stream function

only.
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3.5 Computing the Stream Function

Section 3.4 provided us with enough tricks to construct the stream function for this fluid. Doing so

will also allow us to prove that the velocity field ~u established by the Biot-Savart law (proposition

21) is also divergence free.

Proposition 22 (Stream Function for ~u). Given vector field ~u(x)= ∫
M ∇pG(x, p)×~ω(p) dp,

the following is a solution to the equation ~u =∇×~ψ and thus a stream function:

~ψ : M −→ R3

~ψ(x) :=
∫

M
G(x, p) ~ω(p) dp

Proof. [Bri15] By construction, Green’s functions are always symmetric G(x, p)=G(p, x). Thus

we also have

∇pG(x, p)=∇xG(p, x)

We use this together with integration by parts (lemma 19) to apply the following magic:

~u(x)=
∫

M
∇p(G(x, p))×~ω(p) dp

=
∫

M
∇xG(x, p)×~ω(p) dp

=
∫

M
∇x × (G(x, p)~ω(p))dp

=∇x ×
(∫

M
G(x, p)~ω(p) dp

)
︸ ︷︷ ︸

~ψ:=

The last equation matches the stream function definition ~u =∇×~ψ if we define the integral

term to be our stream function. �

Ok! Don’t forget that in equation (3.8) we applied the divergence free condition to reach the

Poisson problem. We must now check that our solution for ~u is actually divergent free. Thanks to

the stream function ~ψ this is easy to see since the divergence of the curl is always zero.

(3.12) ∇·~u =∇· ∇×~ψ= 0

This concludes that with the knowledge of ~ψ we can easily compute a (not unique) divergence

free velocity field ~u given a specified vorticity field ~ω. However, it is hard to find an expression for

the function ~ψ because it very much depends on on the Green’s function G and the shape of the

domain M. We still need to solve the Poisson problem ∆G = δ first so our fight is not over yet.
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Before we finish this section we want to point out that there is still another interesting

relation to observe.

Theorem 23. For a fluid with vorticity ~ω and stream function ~ψ = ∫
M G(x, p) ~ω(p) dp we

have

~ω=−∆~ψ

Thus ~ψ and ~ω also related as a Poisson problem.

Proof. Notice first that the divergence of ~ψ vanishes:

∇x ·~ψ(x)=∇x ·
∫

M
G(x, p) ~ω(p) dp

=
∫

M
(∇x ·G(x, p)) ~ω(p) dp

=
∫

M
(∇p ·G(x, p)) ~ω(p) dp

=−
∫

M
G(x, p) ∇p ·~ω(p) dp

=−
∫

M
G(x, p) ∇p ·∇×~u(p)︸ ︷︷ ︸

=0

dp = 0

Where we used that the divergence of the curl is always zero. Now just release the curl on the

equation ~u =∇×~ψ and use lemma 20double curl:

ω=∇×~u
=∇×∇×~ψ
=−∇·∇~ψ+∇(∇·~ψ)︸ ︷︷ ︸

=0

=−∆~ψ

�

3.6 Computing the Stream Function in 2D

Until here in this section we have only covered the 3D theory of the stream function until now. In

order to apply this knowledge to surfaces we do not require much work. In fact, the following

theorem makes the transition from 3D to 2D seem easy. Take note that now the velocity field will

be tangential to the surface and the vorticity will be pointing towards the normal direction i.e.

~ω=ω~n.
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Remark 1 (Sign Convention Confusion Warning). The definition of the stream function for

3D and 2D was established by the equations ~u =∇×~ψ and ~u =~n×∇ψ respectively. One could

alternatively add a minus sign to the right hand sides and to ~ψ,ψ simultaneously without

consequences. Throughout the literature both conventions where used and the two equations

used here actually result in opposite signs. This becomes evident at the equations ∆~ψ=−~ω,

∆ψ=ω. In order to stay in touch with the resources this sign convention is taken into account

here too. This is why the stream functions for 3D and 2D will have different signs.

Proposition 24 (2D Stream Function for ~u). For a surface M with normal vectors ~n and a

velocity vector field ~u of an incompressible flow with vorticity ω=~n ·∇×~u, the scalar stream

function can be established by

ψ : M −→ R

ψ(x)=
∫

M
G(x, p) ω(p) dp

where G : M2 \{(x, x) : x ∈ M}−→R is the Green’s function of the surface M.

Proof. By definition of the stream function we demand

~u =~n×∇ψ

As shown in [Dri15] plugin this velocity expression into the formula for the vorticity leads to

ω=∆ψ

As done before in section 3.4 getting velocity from the vorticity we will make use of the Green’s

function G of the surface M in order to solve the Poisson problem, thus leading us to the formula

ψ(x)=
∫

M
G(x, p) ω(p) dp

since

∆xψ(x)=∆x

∫
M

G(x, p) ω(p) dp

=
∫

M
∆xG(x, p) ω(p) dp

=
∫

M
δ(x− p) ω(p) dp

=ω(x)

�
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3.7 Conformal Mappings

We will now turn our attention to the theory of conformal mappings. A review can be found here

[Coh10]. We will also recall the necessary basics to follow this thesis. First of we recall what a

Riemannian metric is [Wei03].

Definition 25 (Metric). A metric g for the manifold M is a collection of inner products on

TM. For any p ∈ M there is a inner product

gp : TpM×TpM −→R

The tangent vectors X ,Y ∈ TpM are assigned to gp(X ,Y ).

The most intuitive metric is the euclidean one gp(X ,Y )= 〈X ,Y 〉 = X TY = X ·Y . Metrics define

what distances and area mean on a manifold such as a surface. A manifold with a metric is called

Riemannian.

In order to study our closed surface of genus zero M in R3 we will need a conformal map from

the surface to the sphere S2. The idea is to study the point vortex dynamics on the sphere with a

modified metric rather than to study it on the arbitrary surface M with its euclidean metric.

Before going into conformal maps we also need to recall the transport.

Definition 26 (Transport). Let f : M −→ N be a map between two manifolds and p ∈ M and

X ∈ TpM. For a smooth curve γ : (−1,1)−→ M with γ(0)= p and X = γ′(0) ∈ TpM we define

d f X := ( f ◦γ)′(0)

We call d f X the transport of X from M to N through f . It is well defined. Note that

X ,Y ∈ TpM while d f X ,d f Y ∈ T f (p)N.

The transport essentially describes how tangent vector are being carried over from TpM to

TpN by f . We now want to classify maps that transport vectors without distorting the angles

between them.

Definition 27 (Conformal Map). Let M, N ⊂ R3 be a Riemannian manifolds with metrics

g̃, g respectively. We call f : M −→ N a conformal map if it is angle preserving anywhere.

That is, for any p ∈ M and X ,Y ∈ TpM we have

g̃p(X ,Y )√
g̃p(X , X ) g̃p(Y ,Y )

= g f (p)(d f X ,d f Y )√
g f (p)(d f X ,d f X )g f (p)(d f Y ,d f Y )

The angel preservation can be seen in the equation above. With the euclidean metrics only,

the definition says:
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cos(θM)= 〈X ,Y 〉
|X ||Y | =

〈d f X ,d f Y 〉
|d f X ||d f Y | = cos(θN )

Where θM , θN represent the angles between X ,Y in M and d f X ,d f Y in N respectively.

Theorem 28 (Conformal Maps on Closed Surfaces of Genus Zero). Let M ⊂R3 be a closed

surface of genus zero. Then there exists a conformal map

f : M −→ S2

Proof. This is a direct result from the uniformization theorem which states that any Riemanian

metric on any surface is conformally equivalent to a metric with constant curvature. Closed

surfaces of genus 0 are conformally equivalent to a surfaces with constant curvature 1, which

has to be S2. �

So of course we need a conformal map and instead of beying lazy mathematicians and saying

“It exists. Not my problem how you find it!” we will introduce Kazhdan et al.’s method [KSBC12]

through the implementation chapter 8. Figure 3.4 shows one example of a conformal map acquired

this way. Note how all angles on the sphere are preserved on the closed surface by looking at the

right angles on the textures. If the conformal map f is bijective, then the inverse f −1 will also be

a conformal map.

And of course we must not forget the conformal factor. Since conformal maps preserve angles

they can still sacrifice the preservation of scales. The conformal factor catches this precisely.

Figure 3.4: A texturing with many right angles is being transported through a conformal map.
The colors are determined by the normals on the sphere. The right angles are preserved.
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Definition 29 (Conformal factor). Given a conformal map f : M −→ S2 in R3 the conformal

factor is defined as the function h : M −→ R that fulfills

g̃p(X ,Y )= h(p)2 g f (p)(d f X ,d f Y )

with X ,Y ,d f X ,d f Y defined like in the definition of conformal maps above.

The existence of a conformal factor follows from the existence of a conformal map. The

observant reader will quickly notice from the definition of conformal maps that

g̃(X ,Y )√
g̃(X , X ) g̃(Y ,Y )

= g(d f X ,d f Y )√
g(d f X ,d f X )g(d f Y ,d f Y )

⇒ g̃(X ,Y )=
√

g̃(X , X ) g̃(Y ,Y )
g(d f X ,d f X )g(d f Y ,d f Y )︸ ︷︷ ︸

h2:=

g(d f X ,d f Y )

The important thing to keep in mind is that from a mathematical perspective it makes no

difference if the point vortices are...

1. living on the surface M with the euclidean metric or...

2. living on S2 with an adjusted metric g̃ that emerges from the conformal mapping f from M

to S2.

So for the sake of being able to apply a theorem later on let’s just adapt to the second

perspective mentioned above.

Remark 2 (Conformal Equivalence). We talked much of M as being our closed surface with

genus zero and euclidean metric. We can also talk about M with it’s conformal relation to

N, meaning that we actually talk about N with a modified metric. So in a way M=N if it is

obvious that we are using the metric obtained from the conformal mapping, not the euclidean

one.

And the true magic comes from the following corollary:
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Corollary 30 (New Metric after Conformal Mapping). Let f : M −→ N be a bijective confor-

mal map from the surface M with euclidean metric to N. It follows that f̃ := f −1 is also a

conformal map and 〈X̃ , Ỹ 〉 = h(p)2 g f (p)(d f X̃ ,d f Ỹ ) for X̃ , Ỹ ∈ TpM.

If we are given the conformal factor h : M −→ N we can directly specify the metric g of N

using:

gq(X ,Y )= 1
h( f̃ (q))2

〈d f̃ X ,d f̃ Y 〉

where q ∈ N, X , Y ∈ TqN and d f̃ X , d f̃ Y ∈ T f̃ (q)M.

This corollary will provide us access to operate on the target metric after a conformal mapping

which in turn will allow us to use Boatto’s results [BK15] for point vortex dynamics. How exactly

do we gain access to the conformal factor? We will show one such method in the implementation

chapter 8 in the section 8.4.2 discrete conformal factor. See figure 3.5.

f

S2 ⊂R3M ⊂R3

pq
f (p)f (q)

Euclidean metric New metric g

Figure 3.5: A conformal Map f : M →S2 mapping a curve from p to q. Notice that the curve is
now distorted, yet it remains directly identifiable using the conformal maps f , f −1.
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3.8 Symplectic Manifolds and Symplectic Gradients

We must also recall the theory of symplectic manifolds as it will play a key role in unlocking the

path to point vortex dynamics on surfaces. The very ambitious readers are recommended to take

a look at V.I. Arnold’s book [VIA89]. However, since our point vortex model does not require the

full uncensored theory we will only recapture what we really need in this chapter in an attempt

to spare the reader. Special care is being made into making this theory relatable geometrically.

The idea of conservation of energy will be a key argument in this thesis to derive the vortex

motion. Energy is given as a scalar function H called the Hamiltonian on the space of possible

configurations of the system.

Without having yet defined what point vortices are we can make a small thought experiment.

Imagine having n ∈N point vortices pi ∈ M on the surface. Together they define a total kinetic

energy H(p1, ..., pn). As usual we demand H to remain constant by the conservation of energy and

know that H resides on the space Mn. We can already tell that the set of possible configurations

{ (p1, ..., pn) ∈ Mn : H(p1, ..., pn)= const. }

is a manifold in Mn. Thus we can describe our system of point vortices by closely studying

this manifold which was attempted to conceptualize in figure 3.6. Our tool of choice to do so are

symplectic manifolds and symplectic gradients.

What is the symplectic gradient sgradH? In general we know that the gradient gradH of a

function H points into the direction of the steepest accent, but since we plan to conserve a energy

H we want to move in a direction that maintain H constant.

n points in manifold M

system Hamiltonian H

1 point in a manifold of Mn

constant Hamiltonian H

interpretation

Figure 3.6: An illustration of the concept of reinterpreting n-point dynamics as 1-point on a
high-dimensional manifold.
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On two dimensional surfaces with euclidean metric it becomes evident that the tangent

vectors in who’s directions H remains constant have to be perpendicular to gradH. Why? Because

any directional derivative can be expressed using a unit tangent vector X ∈ TpM using dH(X )=
〈gradH, X 〉, thus dH(X ) = 0 ⇔ X ⊥ gradH. The two dimensions on the surface make it really

easy to define perpendicular vectors in TpM using the normal vector ~n and the cross product.

The operator

~n× ( · ) : TpM −→ TpM

X 7→~n(p)× X

precisely does the anti-clockwise 90 degree rotation on the surface. The requirement for

normal vectors will not be a problem since we always work on closed surfaces of genus 0, which

are always orientable. Figure 3.7 shows this.

However, the above geometric description only works well for the euclidean metric case. In

order to later derive the change of the symplectic gradient after transport through a conformal

map we must sadly go into more detail.

Definition 31 (Symplectic Manifold). A differentiable manifold M is called symplectic if it

is equipped with a closed, nondegenerate 2-form ∀p ∈ M, σp : TpM×TpM −→R. σ is called

the symplectic form.

M ⊂R3

sgradH
gradH

~n

Figure 3.7: The symplectic gradient illustrated for euclidean surfaces M ⊂R3 with level lines of
H. Red and blue indicate maxima and minima values of H.
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Remark 3 (Symplectic Manifold). σ what? What is a closed, nondegenerate 2-form? In short,

it a alternating non-degenerate bilinear map on TpM with vanishing exterior derivative.

what is an exterior derivative? The restless readers are advised to take a look at [DKT06]

because for our cases in R3 we can work with a simpler framework.

All of our cases deal with 2D surfaces M ⊂R3 with normals ~n that are conformal to a surface

with euclidean metric. Thus we can be satisfied with simply using

σp(X ,Y ) := gp(X ,~n(p)×Y )

On a manifold M the gradient of a function H : M −→ R can be defined using the metric g,

precisely through

(3.13) Y = gradH ∈ TpM ⇔∀X ∈ TpM : gp(X ,Y )= dH(X )

Where dH(X ) is the directional derivative of the scalar function H along X . This equation

will be used to illustrate the analogy of the symplectic gradient to the regular gradient.

Definition 32 (Symplectic Gradient). For a 2D oriented manifold M ⊂ R3 with normal

vectors ~n : M −→R3 and smooth H : M −→R and the symplectic gradient sgradH is defined

as the vector Y that satisfies

Y = sgradH ∈ TpM ⇔∀X ∈ TpM :σp(X ,Y )= dH(X )

This is not just orthogonal to the gradient, it respects the metric g as well in the definition of σ.

Now we finally have enough in order to see how the symplectic gradient adjusts to transportation

through a conformal map.

We will need f : M −→ N to be a bijective conformal map with it’s conformal factor h : M −→R.

As established, on a 2D orientable surfaces M, N with the symplectic form can already be specified.

M is euclidean and N has the metric g, thus σp∈M = 〈X̃ ,~nM(p)× Ỹ 〉 and σq∈N = g(X ,~nN (q)×Y )

respectively with p ∈ M, q ∈ N, X̃ , Ỹ ∈ TpM, X ,Y ∈ TqN. H : N −→R is the smooth function that

we want to compute the gradients from.

Since M is euclidean, the symplectic gradiant for p ∈ M is just

sgradp∈M H =~nM(p)×gradp H(p)

where ~nM(p) is the normal vector at p on the surface M. The magic question now is how we

can define the symplectic gradient sgradq∈N of N?
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Theorem 33 (Symplectic Gradient after Conformal Mapping). Let M be a 2D surface with

euclidean metric g̃ = 〈 , 〉 and N be a 2D surface with metric g. f : M −→ N is a bijective

conformal map with conformal factor h : M −→R, f̃ := f −1. H : N −→R is a smooth function

and H̃ := H ◦ f̃ it’s push forward to N. Then:

sgradq∈N H̃(q)= h( f̃ (q))2d f sgrad f̃ (q)∈M H = h( f̃ (q))2~nN ()×d f grad f̃ (q) H

Proof. Figure 3.8 shows what we are working with. We first need to recall corollary 30 which

stated that the metric g at q on N can be described using the inverse conformal map f̃ = f −1.

gq(X ,Y )= 1
h( f̃ (q))2

〈d f̃ X ,d f̃ Y 〉

Thus gq(X ,Y ) = 0 ⇔ 〈d f̃ X ,d f̃ Y 〉 = 0 and from the euclidean metric we know that the last

equation is the case when d f̃ X and d f̃ Y are perpendicular to each other. Now since conformal

maps preserve angles we instantly know that the transport d f̃ did not change the angle, thus

gq(X ,Y )= 0⇔〈d f̃ X ,d f̃ Y 〉 = 0

⇔ d f̃ X ,d f̃ Y right angled

⇔ X ,Y right angled

⇔〈X ,Y 〉 = 0

This in particular means that

d f (~nM(p)× X̃ )=~nN ( f (p))×d f X̃

f

f̃

metric g̃

N ⊂R3M ⊂R3

p = f̃ (q) q

metric g
symplectic form σ̃ symplectic form σ

Xd f̃ X

Figure 3.8: An overview of our mathematical objects that we deal with in this theorem.
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This nice result will now help us to express the symplectic gradient on N equipped with the

metric g. Let σ̃,σ be the symplectic forms on M and N respectively, then the conformal map

establishes

σ̃p(X ,Y )= g̃p( X , ~nM(p)×Y )

= h(p)2 g f (p)( d f X , d f (~nM(p)×Y ) )

= h(p)2 g f (p)( d f X , ~nN ( f (p))×d f Y )

= h(p)2σ f (p)( d f X , d f Y )

This result links both symplectic forms nicely together. Of course we can reverse the statement

by using f̃ instead of f . We are searching for an expression for Y ∈ TqN that fulfills our symplectic

gradient definition.

dH̃(X )=σq(X ,Y )

d(H ◦ f̃ )(X )= 1
h( f̃ (q))2

σ̃(d f̃ X ,d f̃ Y )

dH(d f̃ X )= σ̃(d f̃ X ,
1

h( f̃ (q))2
d f̃ Y )

dH(X̃ )= σ̃(X̃ ,
1

h( f̃ (q))2
d f̃ Y )

The renaming of X̃ := d f̃ X ∈ T f̃ (q)M makes the connection to the symplectic gradient on M

evident. From its definition it follows that

1
h( f̃ (q))2

d f̃ Y = sgrad f̃ (q) H

d f̃ Y = h( f̃ (q))2 sgrad f̃ (q) H

d f d f̃ Y = d f (h( f̃ (q))2 sgrad f̃ (q) H)

Y = h( f̃ (q))2d f sgrad f̃ (q) H

sgradq H̃ = h( f̃ (q))2d f ( ~nM( f̃ (q))×grad f̃ (q) H )

sgradq H̃ = h( f̃ (q))2~nN (q)×d f (grad f̃ (q) H)

This concludes our proof.

�
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Remark 4 (Symplectic Gradient after Conformal Mapping). We used the conformal relation

g̃ = h2 g for the mapping f : M −→ N for the metrics g̃, g for the manifolds M, N respectively.

However, sometimes the reltation h2 g̃ = g is used instead. In that case Theorem 33 adapts

by flipping the conformal factor:

sgradq∈N H̃(q)= 1
h( f̃ (q))2

d f sgrad f̃ (q)∈M H

Until now we only looked at one single point p ∈ M and defined the symplectic gradient for

that one. How do we use the symplectic gradient for a point in Mn if we want to describe our n

points dynamics?

M× . . .×M︸ ︷︷ ︸
ntimes

= Mn

The answer is that we have to grab n symplectic gradients and unite them together in one

big operator acting on the individual spaces. Imagine having the points p1, . . . , pn ∈ M in your

n-point system with Hamiltonian H. If we fix (n−1) points at the time t = 0, then the system

turns back into a 1-point system and the movement of the movable point pi is described by the

symplectic gradient on M again as we learned above. Infinitesimally, for the motion of pi it makes

no difference if the other (n−1) points are fixed or not, which is why we can express each point’s

motion using their own symplectic gradient.

To write down the linear operator unifying all the symplectic gradients of each point in the

n-point systsem we rewrite the operator ~n× ( ) as a 3×3 matrix

[~n]× =


0 −n3 n2

n3 0 −n1

−n2 n1 0

 ⇐⇒ [~n]×p =~n× p

Next we stack up all point-coordinates p ∈ M into one big vector in p ∈Rdim(M) and define our

matrix:

J =


[~n(p1)]×

[~n(p2)]×
. . .

[~n(pn)]×

 ∈Rdim(M)n×dim(M)n

Thus the symplectic gradient of H : Mn −→R now becomes

sgradp H = J∇H

If this way of thinking seems a bit odd we would like to recall the following: imagine n ∈N
body dynamics in R3 where every point is described by a position xi and a momentum pi. The
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Energy is usually a mix of potential and kinetic energy and thus a function of H : Mn −→R with

M being the position-momentum space M =R3 ×R3. Hamiltonian mechanics now claim that the

time evolution of this system is uniquely defined by

∀i :
dpi

dt
=−∂H

∂xi
,

dxi

dt
=+ ∂H

∂pi

in fact

∀i :

(
X i

Yi

)
=

( dxi
dt

dpi
dt

)
=

(
+ ∂H
∂pi

−∂H
∂xi

)
= ( 0 +1

−1 0
)( ∂H

∂xi
∂H
∂pi

)
= Ji gradM H = sgradM H

where

(
xi

pi

)
is an element of the position-momentum space M =R3 ×R3. This just illustrates

the symplectic gradient in M for one i. The whole system would line up all the is under one

vector together with the matrix

J =


J1

J2
. . .

Jn

 ∈R2n×2n

Ji is then the rotation of gradM H inside the position-momentum space M. J merely collects

all of these rotations from the separated spaces to be applied to elements in Mn. Thus our entire

Hamiltonian system can be described using sgradMn H = J gradMn H. Here sgradH = J∇H.
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4
POINT VORTICES

Finally we arrived at the chapter where we dive into the details of the main method of this thesis.

The previous chapters served to establish the history, background, motivation and basics to

understand what is about to be presented. Now we will show a formal definition of point vortices

and explain how they serve our cause to make a fast fluid simulation.

While reading this keep the following in mind: point vortices attempt to approximate any

given vorticity function ω through a finite number of points.

4.1 Definition of Point Vortices

Definition 34 (Point Vortices). Given n ∈N points pi ∈ M with n scalars ωi ∈R respectively,

we call the “pi”s the point vortices with vortex strengths ωi if the vorticity of the fluid they

represent is expressed as:

(4.1) ω(x)=
n∑

i=1
ωiδ(x− pi)

where δ is the Dirac delta function on M.

Is this a bold move? Instead of adjusting to a given initial velocity field ~u we just push the

velocity field aside and define the vorticity field ω the way we desire it to have. Further more we

just introduced singularities and spikes at the point vortices on the surface.

Fear not, our explanation arrives now. For this we need to recall our description of vorticity

as we have made in section 2.4. There we justified how the magnitude of the vorticity describes

the amount of rotation an object in that flow experiences. At the center of a spiraling whirl in the

fluid this amount of rotation is exceptionally high and this is why we aim to approximate our

vorticity by focusing on it’s strongest bits.
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CHAPTER 4. POINT VORTICES

The use of Dirac delta functions δ is always dangerous and makes only sense when integration

comes into play. This is precisely what we have been preparing in section 3.6 computing the

stream function in 2D. The singularities will become a problem when we try to compute velocities

that are very close to the point vortices, but as we will see later, computing the velocity of the

point vortex itself is no big deal. Computing the velocity with a some distance to the points leads

to similar results as if the vorticity was not on one point but spread in the neighborhood of the

point. The reasons will be similar to how we can often assume planets to be point masses when

computing gravitational forces.

All that we do is the approximation that ∇×~u(x)=ω(x)≈∑n
i=1ωiδ(x− pi). As a motivational

image we can look at the miso cup and slide a spoon through it. You would notice two spirals

turning in opposite directions on the surface. Imagine each center of a spiral to be a point vortex

and the the rotation speed being its vortex strength. See figure 4.1.
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Figure 4.1: Soup as seen by mathematicians. The spoon is sliding upwards and now the fluids
spirals around two points from the edge of the spoon. We think of point vortices as the center of
each spiral.

4.2 Derivation of the Point Vortices Stream Function

In section 3.6 we derived how to compute the velocity field from vorticity through arguments using

integrals in combinations with Green’s functions G. Our definition of point vortices (definition

34) uses Dirac delta functions and that is precisely what we are about to exploit with the stream

function ψ.

Theorem 35 (Point Vortices Stream Function). Given a point vortices system with vorticity

ω(x)=∑n
i=1ωiδ(x− pi) on a surface M, the corresponding stream function can be written as

ψ(x)=
n∑

i=1
ωiG(x, pi)

for x ∉ {p1, . . . , pn}.

Proof. We recall proposition 24 first, as it links the vorticity ω with the 2d stream function ψ.

(4.2) ψ(x)=
∫

M
G(x, p) ω(p) dp
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CHAPTER 4. POINT VORTICES

We can now inject the point vortices assumption and specify the vorticity ω from the stream

function definition with our finite sum of Dirac delta functions. This causes the following chain of

changes:

ψ(x)=
∫

M
G(x, p) ω(p) dp

=
∫

M
G(x, p)

n∑
i=1

ωiδ(p− pi) dp

=
n∑

i=1
ωi

∫
M

G(x, p)δ(p− pi) dp

=
n∑

i=1
ωiG(x, pi)

which concludes our proof.

�

4.3 Point Vortex Velocity Field

Theorem 35 gives us an easy way to compute the stream function of our point vortex system if we

know the Green’s function of the surface M. This allows us to straight forwardly compute the

velocity induced from the vorticity through the stream function through the relation

~u = sgradψ

Theorem 36 (Point Vortex Velocity Field). Given n ∈N point vortices pi on the surface M

with vortex strengths ωi ∈R respectively, then the velocity ~u at a point x ∈ M with ∀i : x 6= p j

is expressed by

(4.3) ~u(x)=
n∑

i=1
ωi sgradx G(x, pi)

Where J denotes the 90 degree anti-clockwise rotation around the surface normal.

Proof. Just insert the stream function constructed in theorem 35 into the relation ~u =~n×∇ψ.

~u(x)= sgradxψ(x)

= sgradx

n∑
i=1

ωiG(x, pi)

=
n∑

i=1
ωi sgradx G(x, pi)

�
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We now have easy access to the fluid velocity field almost anywhere and any passive point

can now be advected. However, we still cannot compute the velocity at each point vortex. The

problem arises from the Green’s function being singular when x = pi in the above formula. The

next section will explain what to compute ~u(pi).

4.4 Point Vortex Dynamics

Theorem 36 blessed us with an easy access to the fluid velocity field away from the point vortices.

However, we still need to find an expression that governs the motion of each point vortex. As

mentioned with the introduction of the stream function in section 3.3 stream functions we can

compute the velocity ~u of any point q ∈ M on the fluid away from the vortices using:

(4.4) ~u =~n×∇ψ= sgradψ

The operator sgrad in the last equation is the rotation operator together with the gradient as

mentioned in section 3.8. ~n× ( ) resembles an anti-clockwise rotation around the normal vector of

the surface. Before inserting different Green’s functions we want to collect a few statement about

this induced velocity field.

On the point vortices them self we cannot compute the velocity because of the singularities at

them. In fact, the velocity induced by one single point vortex drops inversely proportional with

the distance to the point, which is why it will blow up the closer we get to the vortex point. The

speed induced by a point vortex is proportional to the point vortex strength ωi. See figure 4.2.

Figure 4.3 shows the velocity field ~u = J∇ψ induced by the stream function from one single

point vortex ω= δ on the plane R2. Even when not on a flat plane, we can imagine each point vortex

to be inducing a rotation around itself, a velocity that looses its strength inversely proportional by

the distance on the surface to the point. It spins counter clockwise with positive vortex strength

and clockwise otherwise.

Where do we start to describe the dynamics of the point vortices? How does the velocity field

induced by all the point vortices affect the point vortices them self? The best justifications comes

from section 2.5 where we established the vorticity equation and derived the statement: vorticity

r

|~u|
1
r

Figure 4.2: The magnitude of the velocity |~u| induced by one point vortex plotted against the
distance r to that point.
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Figure 4.3: The velocities induced by a single point vortex ω(~x)= δ(~x) in the plane. The vortex is
visualized by a black spot.

is simply advected along the fluid flow [ETK+07]. This means that we want to advect ω along the

flow of their induced velocity field and thus we have to advect the point vortices themself along

the flow. To progress we will need Kirchhoff ’s assumption [KHP91] and we will now justify it by

using some figures as an example.

Figure 4.4 shows how the velocity field is shaped in three different situations. At first we are

given a point vortex that is shifted to the left and has positive vorticity strength. It’s vorticity is

given by

(4.5) ω1

(
x1

x2

)
:=+δ

((
x1

x2

)
+

(
1

0

))
The point vortex of the second image is shifted to the right and has negative vorticity and

thus creates a clockwise moving velocity field around itself. It’s vorticity is given by

(4.6) ω2

(
x1

x2

)
:=−δ

((
x1

x2

)
+

(
−1

0

))
The final image of figure 4.4 shows the velocity field both point vortices acting together. The

vorticity is now given by

(4.7) ω

(
x1

x2

)
:=ω1

(
x1

x2

)
+ω2

(
x1

x2

)
= δ

((
x1

x2

)
+

(
1

0

))
− δ

((
x1

x2

)
+

(
−1

0

))
The important message to take home from these images is that velocity fields add up with

added vorticity. One point vortex moves the whole velocity field created by the other one and vise

versa.
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Figure 4.4: Left point vortex with vortex strength ω=+1 (Top). Right point vortex with vortex
strength ω=−1 (Middle). Both point vortices acting together (Bottom).
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Corollary 37 (Vorticity Fields Add Up). Let M be a surface with n ∈N point vortices pi ∈ M

with vorticity strengths ωi ∈R respectively. Each point vortex defines a vorticity field

ω̃i(x) :=ωiδ(x− pi)

each vorticity field induces a velocity at x 6= pi

ũi(x) :=ωi sgradG(x, pi)

The combined vorticity of the point vortex system is given by

ω(x) :=
n∑

i=1
ω̃i(x)=

n∑
i=1

ωiδ(x− pi)

The velocity field created by the combined vorticity is then equal to the sum of the individually

induced velocity fields for x ∉ {p1, . . . , pn}.

~u(x)=
n∑

i=1
ũi(x)=

n∑
i=1

ωi sgradG(x, pi)

Proof. The proof is simply a consequence of the linearity of the operations. �

Corollary 37 gives us a hint on how to compute the velocities of the point vortices themself.

The key idea is that each point vortex’s motion is determined only by the velocity fields induced by

all other point vortices. This is the standard assumption made by Kirchhoff [KHP91].

Figure 4.4 illustrates this with it’s two vortices in a plane. See how the blue point vortex

alone does not determine any velocity direction in its own location but the red point vortex does

generate a velocity at the position of the blue vortex. In fact, we can imagine that the entire

spiraling structure of velocities created by the blue point vortex is being advected by the velocity

field of the red point vortex and vice versa.

This motivates us to compute the velocities on the point vortices specifically by just ignoring

the contribution of that particular point vortex to itself. Corollary 37 about the sum of velocity

fields makes this particularly easy.

For the figure 4.4 specifically this means that

~u

(
−1

0

)
=ω2 sgradG

((
−1

0

)
,

(
+1

0

))

~u

(
+1

0

)
=ω1 sgradG

((
+1

0

)
,

(
−1

0

))

Where G(x, p) :=− 1
2π ln(|x− p|) as mentioned in proposition 15 for R2. We present the general

version of this statement into a proposition.
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4.5. POINT VORTEX ENERGY

Proposition 38 (Point Vortex Dynamics). Given n ∈N point vortices pi on the surface M

with vortex strengths ωi ∈R respectively, then the velocity ~u(p j) of the point vortex at p j is

expressed by

(4.8) ~u(p j)=
n∑

i=1
i 6= j

ωi sgradpi
G(p j, pi)

Note again that getting the Green’s function G is a huge challenge. Note also that if we have

it, then we can easily compute most of the fluid properties we could ask for. The great thing about

the Green’s function is that it takes care of all the shape properties of M. We derived everything

without asking for curvature.

4.5 Point Vortex Energy

For the planar and spherical vortex dynamics we have all the tools ready to describe their motion

but for general closed surfaces it is necessary to introduce the energy of the system. This is not so

simple due to the singularities of the stream function ψ at the point vortices.

First quickly note that:

Lemma 39. For any scalar function ψ the following equation is true:

∇· (ψ∇ψ)= |∇ψ|2 +ψ∆ψ

Then we want to throw in a statement about the kinetic energy of our system:

Lemma 40. In an incompressible flow with uniform mass, given a vorticity ω with stream

function ψ on a closed surface M the kinetic energy can be expressed as:

E =−1
2

∫
M
ψ(p)ω(p)dp

Proof. To prove this we use the lemma we just mentioned , the relationship ω=∆ψ established

in section 3.5 and the divergence theorem with the fact that our closed surfaces have no boundary

∂M =;.
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E = 1
2

∫
M
|~u(p)|2dp

= 1
2

∫
M
|sgradψ(p)|2dp

= 1
2

∫
M
|~n×∇ψ(p)|2dp

= 1
2

∫
M
|∇ψ(p)|2dp

= 1
2

∫
M
∇· (ψ(p)∇ψ(p))−ψ(p)∆ψ(p)︸ ︷︷ ︸

=ω(p)

dp

= 1
2

∫
M
∇· (ψ(p)∇ψ(p))dp− 1

2

∫
M
ψ(p)ω(p)dp

= 1
2

∫
∂M=;

~n · (ψ(p)∇ψ(p))− 1
2

∫
M
ψ(p)ω(p)dp

=−1
2

∫
M
ψ(p)ω(p)dp

�

Next we want to combine the result of lemma 40 with all the results of our point vortex

assumption.

Theorem 41 (Kinetic Energy of Point Vortex System). Given n point vortices on a closed

surface M at locations pi with strengths ωi we can express the finite excess energy of the

system as:

E =−
n∑

i< j
ωiω jG(pi, p j)

Proof. The point vortex relation tell us that ω(p) = ∑n
i=1ωiδ(p− pi) and from theorem 35 we

know that ψ(p)=∑n
j=1ω jG(p, p j). We want to insert both of these relations into the result from

lemma 40.

But wait! The singularities! If we actually plug in both of these equations we end up with

G(pi, pi) terms emerging in the sum. That is forbidden! Let’s see how far we get:
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E =−1
2

∫
M
ψ(p)ω(p)dp

=−1
2

∫
M

(
n∑

j=1
ω jG(p, p j)

)(
n∑

i=1
ωiδ(p− pi)

)
dp

=−1
2

∫
M

n∑
i=1
j=1

ωiω jG(p, p j)δ(p− pi)dp

=−1
2

n∑
i=1
j=1

ωiω j

∫
M

G(p, p j)δ(p− pi)dp

=−1
2

n∑
i=1
j=1

ωiω jG(pi, p j)

=−1
2

n∑
i, j=1
i 6= j

ωiω jG(pi, p j)− 1
2

n∑
i=1

ω2
i G(pi, pi)

=−
n∑

i< j
ωiω jG(pi, p j)− 1

2

n∑
i=1

ω2
i G(pi, pi)

These G(pi, pi) terms describe the effect of point vortices on them self. They are kind of

trying to induce an infinite velocity without a direction. We obviously have to do something to

include Kirrchoff ’s assumption [KHP91] into this calculation, that each point vortex’s motion is

determined only by the velocity fields induced by all other point vortices. One way to do this is to

modify the stream function such that j 6= i in the sum.

ω(p)ψ(p)=∑n
i=1ωiδ(p− pi)

∑n
j=1ω jG(p, p j)

becomes

ω(p)ψ(p)=∑n
i=1ωiδ(p− pi)

∑n
j=1
j 6=i

ω jG(p, p j)

This is justified by proposition 38 where we excluded the velocity induced by the point vortex

on itself, which is equivalent to removing one term from the stream function. Let’s see if this

works out:
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E =−1
2

∫
M
ω(p)ψ(p)dp

=−1
2

∫
M

n∑
i=1

ωiδ(p− pi)
n∑

j=1
j 6=i

ω jG(p, p j)dp

=−1
2

n∑
i, j=1
j 6=i

ωiω j

∫
M

G(p, p j)δ(p− pi)dp

=−1
2

n∑
i, j=1
j 6=i

ωiω jG(pi, p j)

=−
n∑

i< j
ωiω jG(pi, p j)

As you can see our singularity disappeared and we can finally rest in peace.

�

This gives us what we need to establish the following connection between the symplectic

gradient of the energy and the point vortex velocities:

Theorem 42 (Point Vortex Energy Motion). Given n distinct point vortices pi with strengths

ωi respectively on a closed surface M, then under Kirchhoff ’s assumption the velocity ~u(pk)

of the kth point vortex can be expressed as:

~u(pk)=− 1
ωk

sgradpk
E

Proof. We start with the right hand side and play with it until we can apply proposition 38 Point

Vortex Dynamics to the equation, which we is allowed because Kirchhoff ’s assumption is given.

∇pkG(pi, p j) will disappear whenever i 6= k and j 6= k.
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− 1
ωk

sgradpk
E =− 1

ωk
sgradpk

(
−

n∑
i< j

ωiω jG(pi, p j)

)

=
n∑

i< j

ωiω j

ωk
sgradpk

G(pi, p j)

=
n∑

i=1
i 6=k

ωiωk

ωk
sgradpk

G(pi, pk)

=
n∑

i=1
i 6=k

ωi sgradpk
G(pi, pk)

=~u(pk)

�

This energy expression can and will later be used to derive the equations of motion for point

vortices on general closed surfaces. How can we understand theorem 42? The math shows us

that it returns us the correct velocity but why are we dividing by ωk? The simple answer is that

the devision by ωi and the elimination of non-pk-terms through ∇pk do the correct adjustments

needed by Kirchhoff ’s assumptions.

Remember this: until now the only assumptions we made in this section are that we have

point vortices on a smooth closed surface. All these results will remain applicable for planes,

spheres and other closed surfaces.

4.6 Methodology

In the following three chapters we will apply the same methodology to the problem at hand. The

differences in each chapter arise only from the different geometries used as the basis to run the

point vortices on. The chronology is as such that the reader is guided from the simplest case to

understand up to the most difficult one.

Planar case −→ Spherical case −→ Closed surface case (genus zero)

1: At first we start with planar vortex dynamics (chapter 5) where we have not to worry

about the effects of curvature to derive easy to follow equations of motion. This serves as an ideal

introduction to get familiar with the effects of vortex dynamics that will then be generalized in

the follow up chapters.

2: We then proceed to explain spherical vortex dynamics (chapter 6) where we are lucky to

also be able to fully derive the equations of motions directly. By now the effects with curvature

become more evident.
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3: Finally we will explain the closed surface vortex dynamics (chapter 7) where we will in

detail explain the findings of [BK15] and how to use them to establish the point vortices dynamics

on any closed surface of genus zero. For each of the three chapters mentioned above we will

repeat the following steps:

Observe stream function or energy of the system of the given geometry

↓
Derive equations of motion from the stream function or the energy

↓
Simulate the results. Observe test cases.

Once we finish all of these smooth theory cases we then move on to chapter 8 to give crucial

implementation details for the readers to understand it’s execution thoroughly and if necessary

to implement it them self.

4.7 Results to Observe

Let us mention a number of expected behaviors that we want to see from our vortex dynamics in

order to compare the results across the different geometric cases.

The first and most interesting vortex dynamic effect is Kimuras conjecture [Kim99], which

states that a infinitesimally close pair of two point vortices with equal but opposite vorticity will

move together along a geodesic line. This will be especially fun to visualize for point vortex pairs

on closed surfaces.

The 3D equivalent of a vortex pair would be a vortex ring moving forward inside a fluid. Take

a look at figure 4.5 to see what we mean. The 2D slice representation of such a vortex ring looks

exactly like two point vortices next to each other. This is also a reminder of an example of point

vortices in real life as seen on the surface of a fluid.

Another neat effect is the leap frogging of two vortex rings [Lim97] that can also be repre-

sented in 2D using for point vortices. Figure 4.6 shows footage capturing leapfrogging vortex

rings in real life. One can easily imagine how it should look like using 4 point vortices by looking

at the pictures.

Apart from very simple cases it becomes hard to predict the specific motion of many point

vortices together. This however should not demotivate us since it is a natural (annoying) habit of

fluid motion to be super sensitive and chaotic.

Since point vortices describe a discretization of vorticity ω we can approximate bigger vortex

situations and watch how our point vortices behave. This now finally corresponds to more natural

fluid simulations rather than just looking at a small number of points vortices. We do this
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3D smoke ring 2D vortex pair

Figure 4.5: A vortex ring moving forward (left). A 2D slice representation of the vortex ring as
point vortices (right).

Figure 4.6: Smoke rings frogleaping forward at two frames of time. The unlabled smoke ring slips
through the labled one. Image courtesy from [Lim97]. If the dark spots are point vortices they
should move in similar ways.
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by significantly increasing the amount of point vortices while decreasing the vorticity of each

(otherwise they will just hurl each other away).

Our test of choice of this will be the observation of taylor vortices as done extensivly in

[MCP+09]. In it separated regions of equal vorticity merge and split together. The same test also

used in [AWO+14] and is displayed here in figure 4.7.

Figure 4.7: Pictures from Ascencot et. al. [AWO+14]. Taylor vortices on the surface of the hand
first merge and then split. Red indicates areas of high vorticity.
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PLANAR POINT VORTEX DYNAMICS

~n

y

x

Figure 5.1: Plane R2 embedded in R3. Let’s drop some point vortices and watch them flow.

Our first case study will be the plane that has the simplest point vortex dynamics with complete

symmetry and zero curvature. To be more consistent with the rest of the theory we describe our

plane as a 2D surface through the origin inside 3D space with constant normal vector ~n = (0,0,1).

This way we can for example still use cross products as in the streamer function definition 18

that made use of ~n. However, since such an operation is quite simple:

(5.1)


0

0

1

×


x

y

0

=


−y

x

0



we can just replace ~n× ( ) with a 90 degree anti-clockwise rotation operator J = ( 0 −1
1 0

)
to end

up only working in 2 dimensions again.
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5.1 Planar Point Vortex Dynamics Derivation

The great thing now is that we can take our result form section 4.4 proposition 38 point vortex

dynamics and plug in the Green’s function of the plane that we established in section 3.2

proposition 15.

Let M =R2 be the surface with n ∈N point vortices at positions pi ∈ M with respective vortex

strengths ωi. The dynamics are described by

~u(p j)=
n∑

i=1
i 6= j

ωi sgradG(p j, pi)

Remember that the Green’s function for R2 is given by

G(x, y)=− 1
2π

ln(|x− y|)

Let us explicitly compute the resulting velocity for each point vortex. To do this we need the

gradient of the Green’s function.

Lemma 43. For the Green’s function in R2 where R2 is embedded as a surface in R3 we can

compute:

sgradx G(x, y)= 1
2π
~n× (x− y)
|x− y|2

Proof. sgradx =~n×∇. Keep in mind that x, y ∈R3 but with the z-component as zero in order to

apply our established theory. Also note that

∇x ln(|x− y|)= x− y
|x− y|2

�

With this result in mind we can go straight to the induced velocity field of the fluid and the

point vortex dynamics:

Theorem 44 (Planar Point Vortex Velocity Field). Given n ∈ N point vortices pi on the

surface M =R2 with vortex strengths ωi ∈R respectively, then the velocity ~u at a point x ∈ M

with ∀i : x 6= p j is expressed by

(5.2) ~u(x)= 1
2π

n∑
i=1

ωi
~n× (x− pi)
|x− pi|2

Where ~n is the surface normal (0,0,1)T .
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Theorem 45 (Planar Point Vortex Dynamics). Given n ∈N point vortices pi on the surface

M =R2 with vortex strengths ωi ∈R respectively, then the velocity ~u(p j) of the point vortex

at p j is expressed by
∂

∂t
p j =~u(p j)= 1

2π

n∑
i=1
i 6= j

ωi
~n× (p j − pi)
|p j − pi|2

Where ~n is the surface normal (0,0,1)T .

These are the results that already Kirchhoff has derived when he initiated the point vortex

idea.

5.2 Planar Point Vortex Dynamics Results

Theorem 45 provides us with all differential equations we need to simulate the point vortex

dynamics on the plane M =R2 ⊂R3. Implementation details will be saved for later in chapter 8.

The colors chosen represent the level lines of the stream function and are warm and cold colors

for positive and negative stream values respectively.

Let us take a quick look at the results predicted in section 4.7. First of all Kimura’s conjecture

predicts that for M =R2 that a vortex pair with opposite vorticity should move along a straight

line. Figure 5.2 shows that this is indeed the case.

Figure 5.2: Two point vortices with vorticity +1 and −1 move together on a straight line. (from
top left to right)
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We can also demonstrate this mathematically to make the reader more familiar with the

actual formulas. W.l.o.g. we fix translation and orientation and look at two vortices at p1 = (1,0,0)T

and p2 = (−1,0,0)T with vortex strength ω1 = −1,ω2 = +1. Then our formulas reveal that the

points will move like this:

~u(p1)= 1
2π

n∑
i=1
i 6= j

ωi
~n× (p j − pi)
|p j − pi|2

= 1
2π

ω2
~n× (p1 − p2)
|p1 − p2|2

= 1
2π

(+1)
(0,0,1)T × ((1,0,0)T − (−1,0,0)T )

|2|2

= 1
4π

(0,0,1)T × (1,0,0)T

= 1
4π

(0,1,0)T

One can verify that also ~u(p2) = 1
4π (0,1,0) thereby showing that both point vortices move

along a straight line (a geodesic in R2). The closer they become the faster they will move along

the geodesic.

We can also observe the leap froggin vortices by setting up four point vortices as seen in figure

5.3. This also seems to work well.

Once we have more point vortices many effects mix together and it becomes hard to predict

anything. Nevertheless we want to show what this looks like when we only add a few more

vortices in figure 5.4.

And at last we want to show how many many point vortices look together by constructing the

Taylor vortices experiment. We observe that the method of using point vortices like this won’t

reveal the typical splitting of the newly formed vorticity blob. As seen in figure 6.5 shows this.

The phenomena can not be reproduced because no new point vortices are created that really

flatten out the vorticity. This is however nothing to be sad about. Many fluid solvers fail this test

yet we still get visually appealing motion at a cheap price.
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Figure 5.3: 4 point vortices in leapfrogging set up with vorticity +1,+1,−1 and −1. (from top left
to right)

Figure 5.4: Many point vortices with uniformly random vorticties in [-1,+1]. (from top left to
right)
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Figure 5.5: Many point vortices with equally small positive vorticty forming the taylor vortex
experiment. (from left to right)
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SPHERICAL POINT VORTEX DYNAMICS

Figure 6.1: The S2 sphere embedded in R3.

We move on to the second case study where we sacrifice the property of zero curvature as seen in

the plane but we still maintain full symmetry. This time we have constant curvature and the

property that the normal at a point x ∈S2 is the point itself ( ~n = x ).

6.1 Spherical Point Vortex Dynamics Derivation

The way we prepared for this moment allows us to reach the dynamics completely analogously to

the planar case. We can take our result form section 4.4 proposition 38 point vortex dynamics and

plug in the Green’s function of S2 that we established in section 3.2 proposition 16.

Let M =S2 be the surface with n ∈N point vortices at positions pi ∈ M with respective vortex

strengths ωi. Then the dynamics are described by

~u(p j)=
n∑

i=1
i 6= j

ωi sgradG(p j, pi)
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Remember that the Green’s function for S2 is given by

G(x, y)=− 1
2π

ln
(

sin
(

1
2

d(x, y)
) )

Where d(x, y)= acos(x · y). Taking the gradient of this Green’s function is less comfortable but

we have no choice:

Lemma 46. For the Green’s function on S2 we can compute:

sgradx G(x, y)= 1
4π

x× y
1− x · y

Proof. Let us show this explicitly for coordinate i ∈ {1,2,3} representing the axes:

∂i ln
(

sin
(1

2 acos(x · y)
) )= 1

sin
(1

2 acos(x · y)
) ∂i

(
sin

(1
2 acos(x · y)

) )
= 1

sin
(1

2 acos(x · y)
) cos

(1
2 acos(x · y)

)
∂i(1

2 acos(x · y))

= cos
(1

2 acos(x · y)
)

sin
(1

2 acos(x · y)
) 1

2 ∂i acos(x · y)

= cos
(1

2 acos(x · y)
)

sin
(1

2 acos(x · y)
) 1

2
−1√

1− (x · y)2
∂i(x · y)

= cos
(1

2 acos(x · y)
)

sin
(1

2 acos(x · y)
) −1

2√
1− (x · y)2

yi

= cos
(1

2 d(x, y)
)

sin
(1

2 d(x, y)
) −1

2√
1−cos(d(x, y))2

yi

= cos
(1

2 d(x, y)
)

sin
(1

2 d(x, y)
) −1

2

sin(d(x, y))
yi

=−1
2 yi

cos
(1

2 d(x, y)
)

sin
(1

2 d(x, y)
)

sin(d(x, y))

=−1
2 yi

cos
(1

2 d(x, y)
)

cos(1
2 d(x, y))−cos(d(x, y))cos(1

2 d(x, y))

=−1
2 yi

1
1−cos(d(x, y))

=− yi

2
1

1− x · y

where we used the cosine sum formula cos(1
2 d)= cos(d− 1

2 d)= cosd cos 1
2 d+sind sin 1

2 d. Thus

∇xG(x, y)= y
4π(1− x · y)
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At last we use the relation sgrad=~n×∇ with ~n(x)= x on S2.

sgradx G(x, y)= 1
4π

x× y
1− x · y

�

We then only have to throw in this last lemma into the point vortices theorems:

Theorem 47 (Spherical Point Vortex Velocity Field). Given n ∈N point vortices pi on the

surface M =S2 with vortex strengths ωi ∈R respectively, then the velocity ~u at a point x ∈ M

with ∀i : x 6= p j is expressed by

(6.1) ~u(x)= 1
4π

n∑
i=1

ωi
x× pi

1− x · pi

Theorem 48 (Spherical Point Vortex Dynamics). Given n ∈N point vortices pi on the surface

M =S2 with vortex strengths ωi ∈R respectively, then the velocity ~u(p j) of the point vortex

at p j is expressed by

~u(p j)= 1
4π

n∑
i=1
i 6= j

ωi
p j × pi

1− p j · pi

These formulas are the same as established in [Dri15].

6.2 Spherical Point Vortex Dynamics Results

Theorem 48 provides the key differential equations we need describe the point vortex dynamics

on the sphere M =S2 ⊂R3. Its Implementation will be described in chapter 8. The colors chosen

represent the level lines of the stream function and are warm and cold colors for positive and

negative stream values respectively.

Let us take a quick look at the results predicted in section 4.7. First of all Kimura’s conjecture

predicts that for M =S2 an infinitesimally close vortex pair with opposite vorticity should move

along great circles on the sphere. Figure 6.2 shows that this is indeed the case.

Mathematically this geodesic behavior is easy to verify. Since we only have p1, p2 ∈S2 our

velocities of our point vortices will point in the direction of p2 × p1.
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Figure 6.2: Two point vortices with opposite vorticity move together on a great arc. (from left to
right)

~u(p1)= 1
4π

n∑
i=1
i 6= j

ωi
p j × pi

1− p j · pi

= ω2

4π(1− p2 · p1)
p2 × p1

=αp2 × p1

~u(p2)= ω1

4π(1− p1 · p2)
p1 × p2

= −ω2

4π(1− p1 · p2)
(−p2 × p1)=αp2 × p1

Note that since p1 6= p2 but they still are infinitesimally close we have a well defined plane

containing p1, p2. p2 × p1 being perpendicular to the this plane is the direction that the points

will move along just like on a great arc.

We can also observe the leap froggin vortices by setting up four point vortices as seen in figure

5.3. This also seems to work well.

Also in S2 once we have more point vortices many effects mix together and it becomes hard to

predict anything. Nevertheless we want to show what this looks like with just a few more points

in figure 6.4.

Figure 6.3: 4 point vortices in leapfrogging on S2. (from left to right)
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Figure 6.4: Many point vortices on S2 with uniformly random vorticties in [-1,+1]. (from left to
right)

At last we take a close look at the taylor vortices on the sphere (figure 6.5). As in the planar

case we observe that the method of using point vortices like this won’t reveal the typical splitting.

The reasons are the same. However, this shows that the spherical dynamics are still holding up.

Figure 6.5: Many point vortices with equal small positive vorticty forming the taylor vortex
experiment. (from left to right)
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S2 ⊂R3M ⊂R3

Figure 7.1: Two closed surfaces with genus 0.

Here we arrive at the final stop of our ride. This is by far the hardest case to handle and will

require the most tricks to overcome. All of the background knowledge and planar and spherical

cases where handled in this thesis in order to make these final steps much easier.

Take a look at figure 7.1. How can we possibly pay respect to all these arbitrary deformations

that were absent in the plane and on the sphere? The key point to solve this problem is to use a

conformal map f from the arbitrary closed surface M of genus 0 to S2 to express the point vortex

dynamics in a modified form on the sphere. This technique was formally published by Boatto

et al. [BK15]. Section 3.7 conformal mappings explains all we need to know about conformal

mappings right now and shows that we can rely on their existence.
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7.1 Closed Surfaces Point Vortex Dynamics Derivation

Let M be the closed surface we want to run our point vortices on. If you are given a smooth

parametrization of M and can derive the Green’s function on it then congratulations, you can

skip most of this section and just repeat the steps analogous to the planar and spherical case

using proposition 38 to derive the equation of motion for the point vortices. Sadly, this won’t be

the case for most surfaces which is why the following method will be useful.

Do not despair! Conformal mappings will provide us with a method that allows us to compute

the point vortex system energy directly without explicitly computing the Green’s functions. The

following is only made possible by Stefanella Boatto and Jair Koiller’s result published in 2015

[BK15]. We will recall it in detail to make use of it.

Theorem 49 (“Conformal Metrics”, [BK15] ). Within the context of n ∈N point vortices pi

on surfaces with strengths ωi, consider two metrics in the conformal class of S2, related by a

conformal factor h, i.e., g̃ = h2 g and 2-form Ω g̃. The Hamiltonian H̃ for the vortex system in

the metric g̃ can be obtained from the Hamiltonian H in the metric g by adding two terms:

(7.1) H̃ = H− 1
4π

n∑
i=1

ω2
i log(h(pi))−

(
n∑

i=1
ωi

)
1

Ã(S2)

n∑
i=1

ωi∆
−1
g h2(pi)

Ã(S2) describes the area in the g̃ norm. For now we will call H̃ the metric Hamiltonian.

Proof. Given in [BK15] pages 13-15. �

This is where we are forced to insert a very important request for our point vortices, that the

total vorticity
∫

Mω(x)dx = 0 on our surface vanishes.

Remark 5 (Zero Vortex Sum Demand). In our point vortex system with n ∈N point vortices

with strengths ωi respectively we require the total vorticity to vanish, which in our case

means that the vorticity sum must vanish.

(7.2) 0=
∫

M
ω(x)dx =

∫
M

n∑
i=1

ωiδ(x− pi)dx =
n∑

i=1
ωi

∫
M
δ(x− pi)dx =

n∑
i=1

ωi

We perform this in order to simplify the usage of the theorem 49 to:

(7.3) H̃ = H− 1
4π

n∑
i=1

ω2
i log(h(pi))

Let’s combine our knowledge in the following proposition
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Theorem 50 (Closed Surface Point Vortex Dynamics). Let f be a conformal map from M

to S2 and h the conformal factor of this map. We are given n ∈N point vortices qi on the

closed euclidean surface M ⊂R3 of genus zero with vortex strengths ωi ∈R respectively. Let

pi := f (qi) ∈S2 be the images of these points and let
∑n

i=1ωi = 0. Then the velocity ~u(p j) of

the point vortex at p j in Sp is expressed by

(7.4) ~u(p j)= 1
4πh(p j)2

 n∑
i=1
i 6= j

(
ωi

p j × pi

1− p j · pi

)
+ 1

h(p j)
ω j p j ×∇p j h(p j)



Proof. Take a look at figure 7.2 to understand the set up. With the Hamiltonian from equation

7.3 in place it becomes clear now why we need conformal maps. We want to use this Hamiltonian

to derive the equations of motion for the point vortices using the previously derived method from

Theorem 42 point vortex energy motion from section 4.5 for the point velocities.

~u(p j)=− 1
ω j

sgradp j
E

But be aware! sgradp j
is not the same given any metric. We first map our conformal surface

M to the sphere S2 using f and can rely on the existence of f through the uniformization theorem.

And in order to combine both results we need the conformal factor h of the map f . In fact, in our

case we must adjust sgradp j
to be used on S2 like this:

sgrad−→ sgrad* := 1
h2 sgrad

f

f̃

S2 ⊂R3M ⊂R3

q j
qi p jpi

Euclidean metric New metric g̃ Euclidean metric g
Hamiltonian H̃ Hamiltonian H

Theorem

~u(p j)d f̃~u(p j)

S2 ⊂R3

Figure 7.2: An illustration of the transports carried out to reach our results. f is the conformal
map from M to S2. The vortex dynamics all happen on S2 with the influence of the conformal
factor h and the result is carried back to M.
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The arguments for this can be followed in section 3.8 and remark 33. Consequently, the

metric Hamiltonian from equation (7.3) shows us that we can directly recycle the result from the

spherical vortex dynamics.

H̃︸︷︷︸
metric Hamiltonian

= H︸︷︷︸
sphere Hamiltonian

− 1
4π

n∑
i=1

ω2
i log(h(pi))︸ ︷︷ ︸

new contribution

Here the spherical vortex dynamics motion will directly by inserted through the sphere

Hamiltonian H.

− 1
ω j

sgradp j
H = 1

4π

n∑
i=1
i 6= j

ωi
p j × pi

1− p j · pi

Meanwhile the new contribution gives us something to calculate with. We recall that on S2

we have ~n(p)= p.

− 1
ω j

sgradp j

(
− 1

4π

n∑
i=1

ω2
i log(h(pi))

)
= 1

4π

n∑
i=1

ω2
i

ω j
sgradp j

log(h(pi))

= 1
4π

ω2
j

ω j
~n(p j)×∇p j log(h(p j))

= 1
4πh(p j)

ω j p j × 1
h(p j)

∇p j h(p j)

= ω j

4πh(p j)
p j ×∇p j h(p j)

At last the linearity of the sgradp j
operator allows us to just sum up these two terms to get

the final result:

~u(p j)=− 1
ω j

sgrad*
p j

H̃

=− 1
h(p j)2ω j

sgradp j
H̃

=− 1
h(p j)2ω j

sgradp j

(
H− 1

4π

n∑
i=1

ω2
i log(h(pi))

)

= 1
h(p j)2

(
− 1
ω j

sgradp j
H− 1

ω j
sgradp j

(
− 1

4π

n∑
i=1

ω2
i log(h(pi))

))

= 1
4πh(p j)2

 n∑
i=1
i 6= j

(
ωi

p j × pi

1− p j · pi

)
+ 1

h(p j)
ω j p j ×∇p j h(p j)


�
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The theorem suggests that the point vortices move as if on a sphere but with an additional

self term 1
h(p j)

ω j p j ×∇p j h(p j) given by the gradient of the conformal factor while the overall

speed is rescaled 1
4πh2(p j)

.

~u(p j)= 1
4π︸︷︷︸

factor

1
h(p j)2︸ ︷︷ ︸

conformal influence


n∑

i=1
i 6= j

(
ωi

p j × pi

1− p j · pi

)
︸ ︷︷ ︸

spherical dynamics

+ 1
h(p j)

ω j p j ×∇p j h(p j)︸ ︷︷ ︸
self term


The theorem describes the tangent vector on S2 and not on M. This is just a matter of one

transport d f̃~u(p j) to bring the result back to M. We recommend staying on S2 also for the

implementation and not transporting every tangent vector back to M. Solving the differential

equations on S2 to then transport the resulting points back p j 7→ f̃ (p j) is slightly more accurate

when dealing with discretizations.

Using a neutral vortex particle we can easily derive the velocity fields induced at any given

point:

Theorem 51 (Closed Surface Point Vortex Velocity Field). Given n ∈N point vortices pi on

the closed surface M with vortex strengths ωi ∈ R respectively s.t.
∑n

i=1ωi = 0. Let f be a

conformal map from M to S2 and h the conformal factor of this map. Then the velocity ~u(p)

at p ∈ M away from any point vortex is expressed by

(7.5) ~u(p)= 1
4πh(p)2

n∑
i=1

ωi
p× pi

1− p · pi

Proof. We can argue by simply placing an additional point vortex pn+1 with vorticity ωn+1 = 0.

Then it acts as a passive point vortex as it is still moved by all the others while not moving itself.

The formulas then read

~u(pn+1)= 1
4πh(pn+1)2

 n+1∑
i=1

i 6=n+1

(
ωi

pn+1 × pi

1− pn+1 · pi

)
− 1

h(pn+1)
ωn+1 pn+1 ×∇pn+1 h(pn+1)


= 1

4πh(pn+1)2

n∑
i=1

ωi
pn+1 × pi

1− pn+1 · pi

�

So in other words it moves like on a sphere but with velocities adjusted by the conformal

factor h2. What a trivial looking result! Impressive given that the complexity of the problem

seems to be only encoded into the conformal factor h alone.
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7.2 Closed Surfaces Point Vortex Dynamics Results

Let us take a look at the implementation. Unlike with the plane R2 and the sphere S2 we so not

have the privilege to compute the stream function ψ this time, which is why we use coloring

through the surface normals of the sphere instead.

Just like in the planar and spherical case we will observe the geodesic paths traveled by a

vortex pair through Kimuara’s conjecture. You will notice that the geodesics seem correct but

since the vortex pair has a non-zero fixed distance in between each other in S2, not M. The

inverse conformal map f −1 seems to spread or contract the vortices after mapping them to M

depending on the conformal factor.

Figure 7.3: A point vortex pair moving along a geodesic on M (top row left to right) and on S2

after the conformal mapping f (bottom row). S2 was rotated here to follow the path of the vortex
pair.

We also observe the leap frogging in figure 7.4. Notice that it is falling apart after a few

iterations. This might be due to the different paths each point vortex takes on the curve surface.
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Figure 7.4: 4 point vortices in leapfrogging on a surface M (top row) and on S2 (bottom row).
Notice how the constellation falls apart later. (from top left to right)

In this setting things get especially messy when you look at higher number of point vortices.

Figure 7.5 shows this. Note again how on areas of extreme conformal factors the computations

become less accurate and require finer time steps.

Figure 7.5: Many vortices on M. (from left to right)

At last let us take a look at the taylor vortices now where we simplify our point vortices

visualization to single dots again. Remember that we wanted vanishing total vorticity
∑n

i=1ωi = 0?

Well the taylor vortices experiment require an extensive amount of equal signed point vortices
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∑n
i=1ωi > 0, which is why we add one single opposite point vortex on the opposite side to counter

this unbalance ωn+1 =−∑n
i=1ωi. The results does not seem visually skewed by this addition as

seen in figures 7.6 and 7.7.

Figure 7.6: Taylor vortices seen on the bunny M and on the sphere again. (from left to right)

Figure 7.7: Taylor vortices seen on the symbol of Berlin M and on the sphere. (from left to right)
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Until now we have focused on the smooth theory of point vortex motion only, meaning that we

have always assumed our plane, sphere and closed surface to be smooth objects with infinite

detail. This next chapter feeds on all the theory we have developed so far and discretizes it,

outmaneuvering several dangerously deep and scary pitfalls. We will first mention the software

used for our implementation and how you can use it and then proceed to implement the planar

and spherical case. For the final case, the closed surface vortex motions, we need to introduce

more details about surface to sphere mappings before the implementation.

All of the geometry cases will have similarities. Each one will use the main theorems from

the chapters 5, 6 and 7 in two ways:

1. To make use of the equation of motion for the point vortices.

2. To determine the velocity field away from the points.

Both objectives will make use of the 4th order Runge-Kutta method when solving the differ-

ential equations at each time step.

8.1 About using the Supplement Material

Don’t be afraid if you have never used Houdini before. The implementation as describe in this

chapter will be independent of the software. Also you do not need to know anything about it in

order to run the results on your computer using the documented supplement material.

The animation software we used has it’s main focus on the creation of 3D designs and

animations for games and movies. It comes with numerous useful tools for the testing of our

algorithms. As of today, an email registration is required when downloading the software at
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Figure 8.1: The official Houdini logo with an image of the workspace.

https://www.sidefx.com/products/houdini-apprentice/.

The free version does not hinder the creation or execution of anything we present here. If you

install Houdini, simply open our supplement files with it and follow the documentation written

into the projects to know what to do. Pressing the play button at the bottom of the screen should

execute the default simulation. An extensive tutorial on the use of Houdini for mathematicians

can be found online under wordpress.discretization.de/houdini/. The supplement material only

requires the use of Houdini with Scipy which is trivial to use with Linux and Mac but requires

an additional set up guide for windows found on the tutorial website.

For all differential equations used in here we used the 4th order Runge-Kutta method on all

point vortices at once, meaning that we gathered all coordinates of all points in one large vector

and advected them together. The advection and Runge-Kutta step run in parallel threads. Since

Houdini is not the usual type of rendering software it’s computation times are skewed and not

displayed here. We keep in mind that all vortex dynamics formulas run with O (n2) calculations

were n ∈N is the number of point vortices.

For computational efficiency there are of course problems. At every time step each point vortex

want’s to interact with each other point vortex, thus increasing the amount of computations

quadratically with the number of points n ∈N, namely O (n2). There are of course parallelization

options available in the sum computations of the dynamics and often clusters of far away vortices

can be considered as one. The most significant contributions to a single point vortex comes from

the closest vortices.

8.2 Planar Point Vortex Dynamics Implementation

This case is fairly straight forward. The point vortex dynamics are independent from the reso-

lution of the mesh of the plain so we only have to spawn some points and move them using the
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Figure 8.2: Implementation set up seen from another perspective.

differential equation obtained in section 5.1 proposition 45. See figure 8.2 to better understand

the set up.

Note that the color scheme used on the planar examples where created using the HSV color

wheel to represent the level lines of the following stream function:

(8.1) ψ=− 1
2π

n∑
i=1
i 6= j

ωi ln(|x− y|)

We added little geometries and colored paths to each point vortex to identify them better.

8.3 Spherical Point Vortex Dynamics Implementation

This case is implemented almost as straight forward as in the planar case as section 6.1 proposi-

tion 48 also provides us with clear differential equations for the point vortices. The resolution of

the mesh to build our sphere has no effect either.

Figure 8.3: Implementation for the S2 set up seen from another perspective.
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However, we must make sure that our advected point vortices remain on the sphere. Our

approach to ensure this is to modify the Runge-Kutta method in the sense that the curvature of

the unit sphere is taken into account. Instead of sending point vortices on straight lines we take

the velocity vector and compute where the point vortex would arrive if we moved along the same

distance but in the curved path.

Effectively, we rotate the point vortices instead of moving them on straight lines. Figure 8.4

illustrates this on one arc of the sphere. Note that the curved vector and the straight vector have

the same length. We do this to avoid a loss of motion through the normalization (projection back

to the sphere) that would happen in classical numerical settings.

To understand the coloring in figure 8.3 please refer to the planar case implementation but

with the following stream function:

(8.2) ψ=− 1
2π

n∑
i=1
i 6= j

ωi ln
(

sin
(

1
2

acos(x · y)
) )

p pp

side viewnormal view our advection

Figure 8.4: On S2 we see a tangent vector (left). An advection step with normalization (center).
An advection step on spherical motion (right).
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8.4 Closed Surfaces Point Vortex Dynamics Implementation

Here comes all the fun now. We will now provide crucial steps needed in order to successfully

implement closed surface (genus 0) point vortex dynamics.

We assume that we cannot find a smooth parametrization of the closed surface M who’s

Green’s function we would like to compute. Unlike with the planar and spherical case, we are now

dependent on the resolution of the mesh of a surface that we are given and can only work with the

limited amount of information. The key to implementing closed surfaces point vortex dynamics is

to implement discrete conformal- maps, factors and transports between the triangular surface of

the mesh and the sphere in order to use the result from section 7.1 theorem 50. Also note that we

only work with triangulated meshes (see figure 8.5).

8.4.1 Discrete Conformal Mapping

The most challenging task is to grab a discrete conformal map. This word’s definition is not self

explanatory and there are in general multiple ways to discretize the concept of conformality using

different properties of conformal maps [CW17]. A good way to understand discrete conformal

maps is that we want to map each point of the mesh to a point on the sphere in such a way that

the distortion of the triangles connecting the points is minimal. The individual triangles will

change in scale which we will capture with the conformal factor (figure 8.6).

We compute the discrete conformal mapping using discrete differential geometry and discrete

exterior calculus which has provided handy results in [PP93], [SSP08], [CWW13], [KCPS13],

[AWO+14], [WPS14], [CKP+16] and many more. One of such DEC results from the Can Mean-

Curvature Flow Be Modified to Be Non-singular? paper by Michael Kazhdan et al. published in

2012 [KSBC12] provides us a method to create the conformal map we need through the modified

mean curvature flow. In essence, it is an iterative method that repeatedly solves

(8.3) (Id−δ∆0) fk+1 = fk

Figure 8.5: A low resolution mesh just to display the general structure. We later use higher
resolutions.
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Figure 8.6: An example of a discrete conformal maps. The sphere is mapped to different closed
surfaces of genus zero, thus each surfaces can be conformally mapped to any other.

where ∆0 represents the DEC Laplacian of the initial surface mesh M, δ ∈R the time step,

f0 ∈ R3N the coordinates of all N ∈ N points in the mesh and k ∈ N the iteration counter. The

exact construction of the Laplace operator in this iteration scheme can be read inside the paper.

Applying this backward euler method often enough and normalizing the scale every time results

in a new surface where every point lies on S2 with minimal distortion in the triangles.

The resulting mesh of a sphere provides us with the conformal map that we have been looking

for. As the iterative process of equation (8.3) reshaped the original mesh M to a sphere mesh S2

we can now directly identify each initial point on M with a point on S2. See figure 8.7 to follow

this process.

Please note that this discrete conformal mapping represents a conformal mapping between

smooth surfaces that is bijective! This is evident as the creation of this map emerged through the

distortion of the original mesh.
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Figure 8.7: Multiple iteration steps of Kazhdan et al’s algorithm for the creation of a conformal
map. The texture was applied to the final sphere and then projected back to the previous steps.

8.4.2 Discrete Conformal Factor

The discrete conformal map preserves the angles at each triangle but not the triangle scale. The

conformal factor can be intuitivley understood as the rescaling factor of edges and triangles, but

for our cause we want to know these rescaling factors for each point. To define the conformal

factor on points we use the discrete differential geoemtry (DDG) styled definition established by

Springborn et al. [SSP08]. In a nutshell it calculates the conformal factor on each point through

the rescaling ratios in the surrounding of the point. Figure 8.8 shows triangles being mapped to

each other.

The discrete conformal factor at each point pi of the N ∈N points will be store as a scalar

value hi. It is a common practice to represent conformal factors between two metrics g, g̃ using

the equation g̃ = h2 g = eu g. In the DDG theory proposes that the discretized values of u on the

points have to fulfill this equation:

(8.4) l̃ i j = e(ui+u j)/2l i j

where l̃ i j, l i j are the edge lengths between two points in M and S2 respectively. We can thus

solve for the individual ui values through
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Figure 8.8: Conformal mapping in action seen from up close. Triangles on the bunny (left).
Corresponding triangles on the sphere (right). The triangles look similar and the conformal factor
represent the size scaling of these triangles.

(8.5) eui = l̃ i j l̃ki l jk

l i j l̃ki l̃ jk

using the triangle i jk and then set hi :=p
eui . In order to catch the conformal factors within

each triangle we rely again on linear interpolations of the values between triangle corners (as

later specified in section 8.4.3. Figure 8.9 shows examples of colored conformal factors on surfaces.

Note that in many example the conformal factor ranges between numbers from near zero up to

many thousands depending on the surface.

All these steps mentioned until here are the preprocessing steps to smoothly run the closed

surface vortex dynamics. Next we will explain how the conformal maps are used in our imple-

mentation.

Figure 8.9: Conformal mapping from the sphere (left) to the armadillo (center) with highlighted
conformal factor values (right). Red mean high conformal factor and thus more texture stretching.
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8.4.3 Making Use of the Conformal Mapping

Our point vortices want to live anywhere on the mesh, on points, edges and faces, but right now

our discrete conformal mapping and factors are point-to-point mappings. We now quickly explain

how to get a surface-to-surface mapping from each corresponding triangle from the mesh M to

the corresponding triangle in the mesh S2.

One way to archive this is through the use of barycenter coordinates of each triangle. This is

motivated by the success of the texture mapping that really looks as if the angles on the texture

remain preserved. An analogous term for this would be piece wise linear mapping from each

triangle to another.

The way to perform this mapping for a point p ∈ M on the arbitrary mesh is to first determine

the triangle it lies on (a triangle if p lands on an edge or point) together with the barycenter

coordinates (s, t) of p within that triangle with the corners p1, p2, p3. Through the point corners

of this triangle we can then find the corresponding triangle on S2 with corners f (p1), f (p2), f (p3)

using the point to point mapping f . At last we use the same barycenter coordinates (s, t) again to

define f (p).

This scheme is general for point-point mappings f : A → B representing bijective mappings

on smooth surfaces and is shown on figure 8.10. In short we do these 3 steps for p ∈ A:

1. Locate the triangle p is part of and collect it’s corners p1, p2, p3

2. Find (s, t) such that p = p1 + s(p2 − p1)+ t(p3 − p1)

3. Define f (p) := f (p1)+ s( f (p2)− f (p1))+ t( f (p3)− f (p1))

triangle A

p1

p2

p3

triangle B

p 2
− p 1

p3 − p1

p

f (p1)

f (p3)

f (p2)
f (p)

f (p
2 )− f (p

1 )

f (p
3 )−

f (p
1 )

f

Figure 8.10: An example of how two triangles are mapped to each other using barycenter
coordinates.

89



CHAPTER 8. IMPLEMENTATION

Keep in mind that now every triangle is mapped to another triangle between two closed

surfaces. This means that our map is bijective, and that we automatically posses an inverse map

that is also a conformal map using the exact same method.

Note that we use this scheme not only for the conformal map f but also for the conformal

factor h. Of course, this is the part where the dependence on the resolution kicks in. With more

vertices we can more accurately make conformal mappings which then make the mappings more

precise.

8.4.4 Point Sampling

The consequeces of using a new metric become very evident when observing the sampling of

points from the surfaces M and S2 after mapping with the conformal bijective map f .

In our implementation we work most of the time on S2. If we where to just uniformly sample

the points on S2 and map them back to M via f −1 we’d end up with a very unbalanced distribution

of points. This happens mainly because areas in M that get mapped by f with high conformal

factor h arrive at much tinier areas and are thus underrepresented when uniformly sampled.

We can circument this problem by the use of the conformal factor when sampling or by

weigthing the sample process by the areas of the triangles in M if we were to sample directly on

S2. So the probabilty for a point p ∈S2 to appear in the triangle i jk of the sphere will now be

computed as

P( p ∈ triangle⊂S2(i jk) )= A(triangelM(i jk)
A(M)

Figure 8.11 shows the differences that this makes. It evidently shows the expansion and

contraction of area by the conformal mapping.

8.4.5 Discrete Gradient

For the discrete gradient we grab the piece wise linear established definition for scalar functions

on points on triangle meshes as covered in section 8.4.3. The gradient of a scalar function h on

Figure 8.11: The bunny and the sphere sampled on S2 uniformly (left pair) and using the weights
(right pair).
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the points will thus be constant on each triangle. Given the set of triangles F where each triangle

is denoted by three point indices i jk we define the gradient as

(8.6) ∇i jkh = 1
2A

( (p3 − p2)h(p1)+ (p1 − p3)h(p2)+ (p2 − p1)h(p3) )

Where A is the triangle area.Figure 8.12 displays the formula. This definition will be impor-

tant for the use of the gradient of the conformal factor.

triangle i jk

p1

p3

A p2

∇i jkh

Figure 8.12: A constant gradient on a triangle.

8.4.6 Vortex Dynamics

Initially, our vortices are arbitrarily placed on the surface mesh M, meaning that they can lie

anywhere on any triangle. Using the discrete conformal map f : M →S2 we then project the point

vortices on S2. From then on we only apply the closed surface vortex dynamics on the vortices on

S2 and the corresponding vortices on M only become puppets that are completely dependent on

the dynamics of the vortices on S2 through the inverse conformal map f −1 : S → M. Figure 8.13

illustrate this relation.

f

f −1

S2 ⊂R3M ⊂R3

Figure 8.13: Conformally mapping the surface to M to the sphere S2 (above). Mapping vortices
between M and S2 (below).
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At last we can finally focus on the motion of the point vortices alone. Now that we have the

conformal maps and factors all implemented and ready to use we will directly apply the closed

surface vortex dynamics only on the point vortices on the sphere S2 through the result of theorem

50.

~u(p j)= 1
4πh(p j)2

 n∑
i=1
i 6= j

(
ωi

p j × pi

1− p j · pi

)
− 1

h(p j)
ω j p j ×∇p j h(p j)


Analogously to the spherical case we advect the point vortices in a curved fashion instead of

the primitive straight way as explained in section 8.3.

And after finishing the dynamics on S2 we of course have to transport the results back onto

M using the inverse of our conformal map. The procedure is summed up in algorithm 8.4.6 and

an overview can be seen in figure 8.14.

Algorithm 1 Point Vortex Dynamics on Closed Surfaces
1: Given:
2: triangulated closed surface mesh M of genus zero
3: n ∈N point vortices qi ∈ M with vorticity ωi ∈R
4:

∑
ωi = 0

5: Init:
6: create bijective conformal map f : M −→S2

7: create points pi := f (qi) ∈S2

8: give every point a conformal factor f :S2 −→R

9: Loop:
10: compute all ~u(pi) using theorem 50
11: update all pi by advection on S2

12: update all qi 7→ f −1(qi)

That’s it.

f

f̃

transport

d f̃

S2 ⊂R3M ⊂R3

q j
qi p jpi

qi point vortices

~u(p j)d f̃~u(p j)

ωi vorticity
pi point vortices
ωi vorticity

d f̃~u(p j)
compute here:

~u(p j)
take from S2 :

metric: euclidean metric: g

Figure 8.14: Our algorithm in a nutshell. S2 is responsible for the dynamics while M does the
visualization. The conformal maps f , f̃ = f −1 provide the connection.
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CONCLUSION

In this thesis we presented a complete guide from the theoretical basis of point vortices with all

of its justifications up to the implementation on closed surfaces of genus zeros. Starting with very

general statements about fluid dynamics we provided all mathematical tools necessary to deal

with vorticity on surfaces. We then rigorously explained point vortices and their motivation in

a completely general setting to later apply to distinct surfaces. This allowed us to summarize

previous results about point vortices for the plane and the sphere as well.

In addition we applied the point vortex theory results from Boatto and Koiller[BK15] in

an easy to follow manner with the conformal map creation algorithm from Kazhdan, Solomon,

Ben-Chen and Mirela [KSBC12] while explaining the crucial implementation steps for the whole

project.

The main aim was to establish a comprehensive basis for the theory of point vortices.

Acknowledgements: I thank Prof. Dr. Ulrich Pinkall for the supervision of this master

thesis and Dr. Felix Knöppel and Dr. Albert Chern for all of their contributions during the

discussions.
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