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1. Abstracts

1.1. English
Sections of line bundles on 2 dimensional surfaces in 3 dimensional space can have

many distinct shapes. For practical purposes we prefer smooth sections that are
visibly easy to follow. This is why smoothing operators have been developed on
discrete surfaces as in the inspirational paper [KCPS13] that can be applied to a any
section to return another smoother section. We are interested to make predictions on
one aspect of the resulting smoothed section’s structure, namely position of its signed
zeros. The zeros are the most noticeable feature of a section where the section values
circles around a specific point. The purpose of this thesis is to predict the distribution
of the smoothed section’s signed zeros with multiplicity that are given by applying
the smoothing operator to randomly generated sections of hermitian line bundles
on closed simplicial complexes. This will be done in a discrete setting consequently
meaning that we will compute the expected sum of indices on each face. Why and
how we do this is this thesis’ purpose to explain.

1.2. Deutsch
Schnitte von Linienbündel auf 2 dimensionalen Oberflaechen in 3 dimensionalem

Raum koennen viele Formen annehmen. Für diverse praktische zwecke bevorzugen
wir moeglichst glatte Schnitte die angenehmer für die Augen sind. Genau deswegen
wurden Glättungsoperatoren für discrete Oberflächen entwickelt wie im insperierenden
Paper [KCPS13] die für jeden Schnitt einen neuen glatteren Schnitt zurück geben.
Wir wollen eine entscheidene Vorhersage über die Struktur von geglätteten Schnitten
machen, nämlich über die Verteilung der Nullstellen mit Vorzeichen und Vielfachheit.
Diese stellen die offensichtlichsten visuallen merkmalle von Richtungsfeldern da so wie
sie in der Anwendung vorkommen. Der Zweck dieser Arbeit ist es eine Vorhersage
über die Verteilung der Nullstellen mit Vorzeichen von geglätteten Schnitten von
hermitischen Linienbündel auf Simplizialkomplexen zu machen. Da wir alles in einem
discreten Setup durchführen werden läuft es darauf hinaus das wir für jedes Dreieck
die erwartete Summe der Indices der Nullstellen berechnen müssen. Wie und warum
wir das machen werden ist das Ziel dieser Arbeit zu beantworten.
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2. Introduction

2.1. Acknowledgments
The main ideas and foundations of this thesis are all collected from the blog

posts on the private wordpress website named Discrete Spin Geometry on http:
//brickisland.net/dsg/. Most of the results from the blog that will be relevant
here where archived by Ulrich Pinkall and Felix Knöppel1. This thesis collects many
ideas from the posts to create a detailed and complete description of the results to be
read beyond the bounds of the blogs that are closed to the public. I thank them for
their strong support in helping me overcome many of the struggles I had faced inside
this thesis.

2.2. The Aim of this Thesis
In this paper we will explore the distribution of the zeros counted with sign of

smoothed sections on 2 dimensional discrete surfaces in R3. We apply the smoothing
by the smoothing operator exp(t∆), (t ∈ R, ∆ = Laplace operator) on random
sections and aim to compute the expected signed sum of zeros.
In the introduction we will cover up some basic definitions on the underlying

structure that we build our statements upon. Then we will have a close look at all
the properties that the Laplace operator ∆ has in order to justify why it can be
used for sections smoothing (chap: 3). After that we examine how we can compute
the desired density as we seek and justify the resulting formulas in detail with two
different approaches: once with discrete computations (chap: 4) and once using
integral geometry (chap: 5). At the very end we will combine the two approaches to
archive a solid answer on how to compute what we looked for while visualizing the
result (chap: 6).

2.3. Simplicial Complexes and Hermitian Line Bundles
We will focus on 2 dimensional, closed and connected simplicial complexes M in the

3 dimensional euclidean space R3. Throughout this thesis we will remain discrete with
n ∈ N vertex points {1, ..., n} with positions v1, ..., vn ∈ R3 making up the surface.

1both from the Arbeitsgruppe Geometrie, Technische Universität Berlin, Institut für Mathematik
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2.3. Simplicial Complexes and Hermitian Line Bundles

1

2

3

4

5

Figure 2.1.: Example of simplicial complex (V,Σ) with 4 vertices, 7 edges and 2 faces.

Definition 1. Let V ⊆ R3 a set of n ∈ N vertices and Σ ⊆ P(V ) (the power set
P (V )). Let #S := number of elements in the set S. Then (V,Σ) is called a 2
dimensional simplicial complex if:

• i) if S ∈ Σ ⇒ #S ≤ 3 and if A ⊆ S ⇒ A ∈ Σ. We call S a simplex.

• ii)
⋃
S∈Σ S = V .

We Can imagine these simplices S ∈ Σ to be an instruction describing which vertices
to consider as connected. These are then used to define what points, edges and faces
(triangles) are part of our simplicial complex. So if ...

• ... #S = 1 ⇒ It is just a point representation of the vertex. By property 2,
every vertex v ∈ V appears in some element of Σ.

• ... #S = 2 ⇒ there exists an edge between the two vertices of S. For each
{i, j} ∈ Σ there are edges eij and eji that point in opposite directions.

• ... #S = 3⇒ there exists a triangle between the three vertices of S. By propertry
i) the edges and points around a face are always part of the simplicial complex.

We could have defined simplicial complexes for arbitrary dimensions k ∈ N but it is
now best to focus only on what we need. See figure (2.1) for an example. A simplicial
complex is called closed if every edge is part of exactly two faces.

Next up are the sections on surfaces, which require careful attention in their
definition. We might as well have focused on tangent vector fields. However, dealing
with sections is worth it to archive a more general results.

We need to define line bundles on our simplicial complex M := (V,Σ) since in
this context we want the simplicial complex to be an approximation of some smooth
surface and thus require additional information such as a connection.

3



2. Introduction

Definition 2 (Discrete hermitian line bundle). A discrete hermitian line bundle
L over a simplicial complex M is a map π : L −→ V such that Li := π−1(i) has
the structure of a 1-dimensional hermitian vector space for each vertex i ∈ V .

When saying hermitian line bundle L over M we implicitly have some π. At the
moment there is no way to compare vectors between Li and Lj as we have no notion of
a transport in between neighbouring vertices. So the line bundle itself in the discrete
case requires additional information or help to be more successfully understood as an
approximation of a smooth surface. The following definition provides this extra help
in form of mappings.

Definition 3 (Discrete hermitian line bundle with curvature). A discrete hermi-
tian line bundle with curvature over a simplicial complex M is a triple (L, η,Ω)
where L is a hermitian line bundle over M . η is a discrete connection mapping
for each edge eij to a unitary map ηij : Li −→ Lj with ηji = η−1

ij . Ω is a closed
real-valued 2-form such that on each face ijk of the simplicial complex we have:

ηki ◦ ηjk ◦ ηij = eiΩijk id

The above definition is inspired by it’s smooth equivalent where a connection ∇ is
used to define unique unitary parallel transports ηγ on a path γ [KP15] which is why
we name η a discrete connection. The problem with the discrete connection is that
the effect made by its transport ηki ◦ ηjk ◦ ηij around the face ijk is only observable
up to mod 2π. In other words, when transporting x ∈ Li using ηki ◦ ηjk ◦ ηij , we can
not see how often the smooth equivalent would have been winding around the face
ijk.
The solution to this problem is the additional information given by Ω. Ωijk is the

final rotation angle around a triangle and can be interpreted as a form of curvature.
Without it the transport ηki ◦ ηjk ◦ ηij would trap the rotation to [−π, π]. In our later
calculations we will take Ω as an extra input to have a more precise solution (chapter:
4 & 5).

If we are only given a discrete geometry (only a simplicial complex M) without any
connection η or curvature Ω we can still define a trivial one based on weak assumptions.
In this case we will first define a new η just as constructed in [KCPS13] (section 6).
Then we define Ωijk ∈ (−π, π) to be as such that ηki ◦ ηjk ◦ ηij = eiΩijkid. This causes
the problem that Ω is trapped in an interval but this should not be surprising given
the nature of starting with a finite set of points to approximate infinitely many where
naturally information does get lost. The finer the triangulation the less relevant to
curvature limitations will become since smaller triangles have less curvature anyway.

We avoid the case where Ω = ±π is as it is confusing and meaningless as it happens
extremly rarely and will pose no problem in this thesis.
The line bundle that we will handle is inspired by the tangent bundle TM . So

Li = TiM naturally has the structure of a two dimensional euclidean plane, but we
will identify it using C and from now on work with C. In terms of projective geometry
we regard C as a line, which is why we name L an hermitian line bundle.
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2.4. Sections and Projections

2.4. Sections and Projections
Let us now be precise of what our vector fields generalization for line bundles are.

Definition 4 (Section). A section φ over the hermitian line bundle L is a map

φ : V −→ L , i 7→ φi ∈ Li
We define Γ(L) as the set of all sections over L.

We can now choose a normalized and non-vanishing section X and write any other
section ϕ ∈ Γ(L) as ϕi = ziXi, zi ∈ C and call this X our base section. We can define
any sections in Γ(L) by selecting z = (z1, ..., zn) ∈ Cn and defining a new section
ϕi = ziXi. Hence we can regard sections of finite simplicial complexes as elements
of Cn and thus work with matrices when dealing with linear operators on sections.
So with a choice of a normalized and non-vanishing X ∈ Γ(L) we have an bijective
identification between hermitian line bundle sections Γ(L) and Cn. This choice of
base section is important for future calculations.

To stay true to the smooth analog of parallel transports we define a section φ ∈ Γ(L)
to be parallel if for the underlying line bundle we have ηij(φi) = φj . The name
parallel will become evident when we later define the rotation form (Def: 9). A
parallel transport [KP15] along a path of edges γ := ij, jk, ..., hl is induced by the
underlying connection η and is defined as

Pγ : Li −→ Ll, Pγ = ηhl ◦ ... ◦ ηjk ◦ ηij
We also need to define the scalar product that we are going to use for the vector

space of sections Γ(L).

Definition 5. Let (L, η,Ω) be a hermitian line bundle. For φ, ϕ ∈ Γ(L) we define
a hermitian inner product based on the geometry of the simplicial complex.

〈〈 . , . 〉〉 : Γ(L)× Γ(L) −→ C

〈〈φ, ϕ〉〉 =
n∑
i=1

Ai〈φi, ϕi〉i

where Ai is the area of the polygonal surface around the vertex reaching the
midpoints of the surrounding triangles and 〈 . , . 〉i is the scalar product on Li.

Lets us be clear about what we mean by zeros of vector fields with multiplicity of
sections ϕ ∈ Γ(L). A normal zero is just a point i ∈ V such that ϕi = 0. In the
smooth case, the multiplicity of the zero is related to the behaviour of the vector field
in a local neighbourhood of v on the surface M . In the discrete case we can’t look
at a local neighbourhood of a point and we also cannot explicitly talk about zeros
away from the vertices since we are only given information on the vertices. Hence we

5



2. Introduction

Figure 2.2.: Real life comparison of a Zebra’s stripe pattern and a zero in a directional
field [KCPS15]. (Photos courtesy Trisha Shears and André Karwath)

will approximate or make reasonable guesses using a fine triangulation and theorems
relating the values on the vertices and the parallel transport to the zeros inside each
face (chap: 4),(chap: 5).
Too more evidently comprehend what a zero of a vector field looks like we take

look at figure (2.2). We know that any stripe pattern of a closed surface has at least
one zero (harry-ball theorem) and that we have a less trivial behaviour for the stripes
at these zeros. The index of a zeros is the winding number of the directions in the
local neighbourhood of the zeros.

The goal is to observe the distribution of the zeros of sections. So given a section
φ ∈ Γ(L) ∼= Cn we can multiply that section by any λ ∈ C∗ := C \{0} (point wise) so
that the resulting section, defined as λφ, still has the exact same zeros with the same
multiplicity and sign. This means that sections on hermitian line bundles that are
non-zero multiples of each other can be regarded as part of the same equivalence class
regarding the location, multiplicity and sign of their zeros, which is why projective
geometry becomes relevant. Visually, multiplying a section φ by λ 6= 0 scales and
rotates all “vectors“ (the values φi) by the same amount inside their respective spaces
(Li).

6



2.4. Sections and Projections

Definition 6 (Projection map). If z ∈ Cn \ {0} for some n ∈ N, then we define
[z] := {λX ∈ Cn|λ ∈ C}. This is the unique one dimensional subspace containing
in Cn containing z. For future use we define the map

[ ] : Γ(L) \ {0} −→ CPn−1

φ 7→ [φ]

CPn−1 is a orientable Riemannian manifold with the Fubini-Study metric induced
by the euclidean metric when relating CPn−1 to S2n−1. Let [x], [y] ∈ CPn−1, then the
CPn−1 distance between [x], [y] is given by

dF (x, y) = arcos
( |〈φ, ϕ〉|
|φ||ϕ|

)
(2.1)

with 〈 . , . 〉 being the standard hermitian scalar product of Cn.Note how the
maximum distance can only be π

2 and the area of CPn−1 is finite too [HAtmGg93].
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3. Laplace Operator & Smoothing

In this chapter we will closely examine the Laplace operator ∆ with facts that are
essential for the main results presented in this thesis. We will formally discuss ∆’s
properties and discuss its use in the smoothing operator (def: 7).

3.1. Laplace Operator
The Laplace operator ∆ is an important linear function that appears in many equa-

tions in physics such as in heat and fluid flow, in quantum mechanics, in electrostatics,
in gravitational potentials and in much more. In differential geometry it’s most general
form is called the Laplace-Beltrami operator defined by f 7→ trace(Hessian(f)).
However, we require a different definition for our discrete constructions. Due to

the fact that in the discrete case we have limited information of the smooth surface
that our discrete surface tries to represent the discrete Laplace operator can also only
be an approximation of the smooth Laplace operator. There exist multiple different
possible approximations and none of them fulfil all core properties of the smooth
Laplacian [WMKG07].

Nevertheless, our favorite Laplace operator is the cotan-Laplace operator as it was
defined in [PP93]. For a simplicial complex M = (V,Σ) this matrix ∆ ∈ Cn×n is
defined as

∆ij =


0 , i 6= j, {i, j} /∈ Σ

1
2(cot(αij) + cot(βij)) , i 6= j, {i, j} ∈ Σ

−
∑
k 6=1 ∆ik , i = j

using the angles in αij , βij as shown in the figure (3.1).

• ∆ is linear over the field C. This means that we can view ∆ as a Matrix
according to a non-vanishing base section X ∈ Γ(L).

• ∆ is hermitian. ∆∗ = ∆. ( ∗ = conjugate transpose ) Hence by the spectral
theorem [Haw75] we know that all eigenvalues of ∆ must be real and that we can
always find a basis of orthogonal sections given the scalar product we defined.

• ∆ is positive semi definite, which is an equivalent statement as to say that all
eigenvalues are greater or equal than zero. Together with the above statement
this allows us to sort the eigenvalues and eigenvectors respectively. From here
on we will index these as:

8



3.2. Smoothing Operator

l

j

i

k

αij

βij

Figure 3.1.: A part of a simplicial complex with labels needed to calculate the cotan-
Laplace operator entry ∆ij .

λi ∈ R+ ∪ {0} is the eigenvalue to the eigenvector vi ∈ Cn for ∀i ∈ N, i ≤ n
such that

λn ≥ ... ≥ λ1 ≥ 0

3.1.1. Section Laplace Operator

In this thesis we will focus on the Laplace operator as defined in the related
Globally Optimal Direction Fields paper [KCPS13](sec. 6.1.1). We omit repeating the
construction details as they are too complex and are explained in detail in the paper.
This section Laplace operator is the adaptation of the cotan-Laplace operator as

we defined in the section above to be used on sections. If the line bundle L is trivial
(i.e. Li ≡ C) then both, the cotan-Laplace operator and the adaption to line bundles
are the same.

From now on throughout this thesis we will only use the adapted Laplace operator
for the sections in Γ(L) from a discrete hermitian line bundle L. In section (2.4) we
had mentioned how Γ(L) is identifiable to Cn. For that reason let us now speak of the
Laplace operator as a function ∆ : Cn −→ Cn rather than using ∆ : Γ(L) −→ Γ(L)
after having chosen a non-vanishing base section X ∈ Γ(L).
Additionally the adapted Laplacian from the paper does not have zero as an

eigenvalue. This means that our ordering from above becomes:

λn ≥ ... ≥ λ1 > 0

See the comment about constant sections in section (3.2) to understand why.

3.2. Smoothing Operator

Now that we have established what we need of the Laplace operator, we can take a
look at how it can be used for smoothing. For this reason, lets take a look at the heat
equation [HO12].

9



3. Laplace Operator & Smoothing

Figure 3.2.: Heat flow example on planar surface. Height represents the heat. Pictures
from [Ale07]

Let ϕt : I × C(M) −→ C(M) be a smooth function of a surface M and let I be an
open connected interval with 0 ∈ I ⊂ R. If ∆s is the smooth Laplace-operator we say
that ϕ solves the heat equation if and only if

∆sϕt = −∂tϕ,∀t ∈ I

For our discrete purpose we modify this to ϕt : I × Cn ⇒ Cn and use the discrete
Laplace operator. The i-th entry in Cn represents value on the i-th vertex.

There are many solutions to it the way we defined it, but it gets interesting as soon
as we select the initial conditions ϕ0 ∈ Cn to be fixed. Physically, when using real
scalar values on M , the solutions for real values describe the flow of heat on the given
2 dimensional surface over time given the initial heat distribution ϕ0 (fig: 3.2). The
Laplace operator distributes values between two neighbouring vertices in proportion
to the weight of the edge and the gradient of the values along the edge. Using complex
instead of real values does not change the fact that these values become more evenly
distributed each time when applying the Laplace operator.
Distribution values in proportion to the weight of the edge works fine with scalars,

but when using sections this becomes non-trivial. With an arbitrary selection a
non-vanishing base section X ∈ Γ(L) we need the transports ηij to compare ziXi ∈ Li
with zjXj ∈ Lj if i and j are two neighboring vertices. With enough smoothing,
ηij(ziXi) becomes closer to zjXj even though zi and zj can be completely different.
The important fact is that using the Laplace operator that we chose in section

(3.1.1) we end up doing the same smoothing as a normal Laplace operator would
do. Section values become more evenly distributed where their edges have more
weight dependant on the geometry, thus performing what we interpret as smoothing
of sections. The eigenvalues do not change when choosing a base section X because
that is equivalent to finding a different representation matrix according to a different
base. Another difference is that there is no constant section that is analogous to the
constant solution for the scalar values on M since parallel transports back to a vertex
itself are not identity mappings. This is essentially why no eigenvalue is 0.
Note how ϕ itself does not make any reference to the underlying geometry, yet

every geometry has distinct solutions. For every different surface (simplicial complex)
we acquire a different Laplace operator ∆ which determines how the geometry affects
the flow.

10



3.2. Smoothing Operator

This crates a linear differential equation system. Similarly to the solution of the
differential equation

λf(t) = ∂tf(t), f(0) = A being f(t) = e−λtA ∈ C

we know that ϕt = e−t∆ϕ0 solves the heat equation:

∂t
(
e−t∆ϕ0

)
= ∂t

 ∞∑
j=0

(−t)j∆j

j! ϕ0


=
∞∑
j=0

−j(−t)j−1∆jϕ0
j!

= −
∞∑
j=1

(−t)j−1∆∆j−1ϕ0
(j − 1)!

= −∆
∞∑
j=0

(−t)j∆j

j! ϕ0

= −∆
(
e−t∆ϕ0

)
and e−0∆ϕ0 = ϕ0

(3.1)

where ∆j is defined as the jth successive application of the Laplace operator. Sadly,
e−t∆ is not easy compute explicitly, yet essential for this thesis. Let use therefor
define:
Definition 7 (Smoothing Operator). Let L be a hermitian line bundle on the
simplicial complex M . ∀t ∈ R the smoothing operator St : Γ(L) −→ Γ(L) is
defined as:

ϕ 7→ Stϕ := e−t∆ϕ =
∞∑
j=0

(−t)j∆j

j! ϕ

Intuitively, we can view St as an operator that applies ∆ a continuous amount of
times to a section ϕ. For t = 0 we apply ∆ zero times and as t increases so does the
influence of higher powers of ∆ in the operator as seen in equation (3.2).

e−t∆ϕ0 =
original field︷︸︸︷

ϕ0 +
1st order︷ ︸︸ ︷
−t∆ϕ0 +

2nd order︷ ︸︸ ︷
t2

2!∆
2ϕ0 +

3rd order︷ ︸︸ ︷
−t3

3! ∆3ϕ0 + ... (3.2)

Note that St is as a composition of linear operators also linear. Now let us take a
close look on how St acts on the eigenvectos ϕi of ∆.

Stϕi =
∞∑
j=0

(−t)j∆j

j! ϕi =
∞∑
j=0

(−t)jλji
j! ϕi =

 ∞∑
j=0

(−t)jλji
j!

ϕi = e−tλiϕi

11



3. Laplace Operator & Smoothing

So St has eigenvectors ϕi to eigenvalues e−tλi . Additionally St is hermitian as seen
here:

S∗t =

 ∞∑
j=0

(−t)j∆j

j!

∗ =
∞∑
j=0

(−t)j
(
∆j
)∗

j! =
∞∑
j=0

(−t)j (∆∗)j

j! =
∞∑
j=0

(−t)j∆j

j! = St

By the spectral theorem again [Haw75] this means that {ϕi}i=1,...,n form an eigen-
vector basis to the eigen values e−tλi of the operator St. We write ϕ ∈ Γ(L) as a
composition of eigenvectors

ϕ =
∞∑
i=1

µiϕi, µi ∈ C

Thus we deduce:

Stϕ = St

( ∞∑
i=1

µiϕi

)
=
∞∑
i=1

µiStϕi =
∞∑
i=1

µie
−tλiϕi (3.3)

The expression (3.3) allows us to work with St without having to compute the
powers of ∆. Further above we had mentioned how for our purpose of finding the
density of the indexed zeros, the non zero multiples of the sections becomes irrelevant
(sec: 2.4). So under the assumption that the above linear combination is well defined
in terms of convergence we can always select a different representative section by
normalizing.

3.3. Smoothing Applications

Why do we want to smooth anything anyway? In the following section we will
try to explain why it is useful besides computing the flow of heat. Lets explore the
relationship between the ∆ and the discrete Dirichlet energy.
In our discrete setting we can express the Dirichlet energy of a discrete section

φ ∈ Γ(L) of a hermitian line bundle L over a simplicial complex M as

ED(φ) := 〈〈∆φ, φ〉〉

And by writing φ as a linear combination of eigenvectors of ∆ we get

ED(φ) =
∞∑
i=1
|µi|2(λi)

To minimize this energy with the condition that 〈φ, φ〉 = 1 it suffices to choose
|µi| = 1 for all i such that λi is the smallest eigenvalue and µi = 0 otherwise since λi
is always positive and ordered (sec: 3.1). So the minimizers of the Dirichlet energy
under normalized condition all lie in the eigenspace of the smallest eigenvalue.

12



3.3. Smoothing Applications

Figure 3.3.: globally optimized direction field example on a bunny. Colored dots
indicate the index of a zero. [KCPS13]

Figure 3.4.: Example application of smoothed sections [KCPS15]

The most important source of inspiration for this work is the paper by Ulrich Pinkall,
Felix Knöpel, Keena Crane and Peter Schröder on globally optimized direction fields
[KCPS13]. Figure (3.3) shows the output of the directional field algorithm when
applied to a section on the bunny with highlighted zeros. The directional field on the
bunny exemplifies one smoothed unit vector field.

This image of the Bunny and several more examples allude that the zeros of these
smoothed sections (i.e. the sources and sinks of the lines) gather in a non random
fashion when smoothing random initial vector fields. However, instead of using the
smoothing operator St, these examples where generated using a simpler computational
approach by numerically solving a linear equations. This is called the inverse power
method and can be applied iteratively for advance smoothing. It aims at finding the
eigenvector of the smallest (absolute) eigenvalue. These smoothed directional fields
can be used to create nice stripe patterns and better texturzation (figure 3.4). For
more information see [KCPS15].

13



3. Laplace Operator & Smoothing

Another look at the Zebra figure (2.2) sparks curiosity about their locations after
smoothing. To generate a nice stripe pattern from a smoothed directional field we
would prefer these zeros to be in less obvious locations. Let us find out where they
are heading by the end of this thesis.

3.4. Smoothing Convergence

For large values of t we can establish the following

Theorem 8 (Smoothing convergence).

If ϕ =
∞∑
i=1

µiϕi 6= 0

for some µi ∈ C. Define imin := min{i ∈ N | µi 6= 0}. then we have

lim
t→∞

[Stϕ] =

imin+dim(Eig(λimin ))−1∑
i=imin

µiϕi


where [ ] is the projection map [defined in sec. 6].

proof. St is hermitian and thus diagonalizable. Hence the algebraic multiplicity is
equal to the geometric multiplicity for each eigenvalue. We know that imin is well
defined since otherwise ϕ ≡ 0 which is not the case. Therefore we can write

Stϕ =
∞∑

i=imin

µie
−tλiϕi

We can scale ϕ by non zero complex numbers since we are only interested in the
corresponding element in CPn−1. Therefore we define a scaled version of this linear
combination

ψt := Stϕ

e−tλimin
=

∞∑
i=imin

µie
t(λimin−λi)ϕi

and compute the limits of the new linear factors

lim
t→∞

et(λimin−λi) =


∞ , λimin − λi > 0

1 , λimin − λi = 0

0 , λimin − λi < 0

The “∞“ case can not occur since the eigenvalues are ordered (sec: 3.1) and λimin

is the smallest occurring eigenvalue. So if t → ∞ only those vectors ϕi become

14



3.4. Smoothing Convergence

relevant that have λi = λimin . Due to the ordering of the eigenvectors those are exactly
ϕimin , ϕimin+1, ..., ϕimin+dim(Eig(λimin ))−1 which we use to conclude our proof:

lim
t→∞

[Stϕ] = lim
t→∞

[ψt]

=

 lim
t→∞

∞∑
i=imin

µie
t(λi−λimin )ϕi


=

imin+dim(Eig(λimin ))−1∑
i=imin

µiϕi


(3.4)

This proposition lets us now deduce that for large t, the ϕi components that have
an eigenvalue equal to the smallest eigenvalue λimin have much larger linear factors
than any other eingevector, thus rendering every other eigenvector’s influence obsolete.
Since in this thesis ϕ is randomly selected we have µi from continuous distribution,
therefore it is safe to say that the probability that µ1 = 0 is zero. This results in
imin = 1 and thus

lim
t→∞

[Stϕ] =

dim(Eig(λ1))∑
i=1

µiϕi


The random section φ is mapped orthagonally onto Eig(λ1). Because of this the

choice of orthonormal basis of eigenvectors is irrelevant in the final computation.
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4. Discrete Index Approach

In the previous chapter we established and discussed smoothing, now it is time
to derive and deal with ways to compute the expected sum of signed zeros with
multiplicity on discrete surfaces. In this chapter we will discuss one way of doing so
using the rotation 1-form ξ and face indexes.

On smooth surfaces, the Poincare-Hopf theorem relates the sum of indexes with a
basic property of the surface. In this chapter we will expand this relationship between
the geometry and its indexes for the discrete case in order to work with it on a per
triangle basis. The discrete index theorem that we will derive here will explain how
the number of zeros on a simplicial complex with a hermitian line bundle can be
approximated without further information of the inside. We will also see the limits
of this approach before continuing with a completely different one in the chapter
afterwards.

4.1. Rotation Form and Indexes

Definition 9 (Discrete rotation form ξ). Let φ ∈ Γ(L) a section on a simplicial
complex M and ij and edge in M and η the connection of L. If ηij(φi) 6= −φj
and φi 6= 0 the discrete rotation 1-form ξ is defined by

ξφij = arg
(

φj
ηij(φi)

)
∈ (−π, π)

This is discrete analog of the smooth rotation form ξφ := 〈∇φ,iφ〉
〈φ,φ〉 where ∇ is a

connection. The rotation form measures the rotation caused by the unitary maps
ηij along each edge, like when transporting a tangent vector from one tangent space
TpM to another tangent space TqM when p, q are elements of a smooth manifold M .
ηij(φi) 6= −φj and φi 6= 0 is required to avoid problems with ξ being undefined. For

our later purpose this will not be a problem since the set of sections that fulfill to
cause these problems form a null set meaning that their influence will vanish later
when taking integrals.

Also note how parallel sections defined in (sec. 2.4) influence the rotation form. If
φ is a parallel section, then ξφij = arg

(
φj
φj

)
= arg(1) = 0 for all edges ij in M . Parallel

sections do not rotate.

Lemma 10. The discrete rotation ξ form is invariant under non-zero multiplica-
tions.
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4.1. Rotation Form and Indexes

Proof. If (L, η,Ω) is hermitian line bundle on a simplicial complex M , φ ∈ Γ(L),
c ∈ C \ {0}. Let ij be an edge in M , then

ξcφij = arg
(

cφj
ηij(cφi)

)
= arg

(
cφj

cηij(φi)

)
= arg

(
φj

ηij(φi)

)
= ξφij

We use this rotation form to define the discrete index, which is another analog to
the smooth index as it appears in [Mil97].

Definition 11 (Discrete index). Let (L, η,Ω) be a discrete hermitian line bundle
over the simplical complex M , φ ∈ Γ(L) and ijk a triangle in M . We define the
index 2-form of φ by

indφijk := 1
2π (dξφijk + Ωijk)

where dξφijk = ξφij + ξφjk + ξφki

The index describes the change in angle a section undergoes after being transported
around a triangle while taking into consideration the curvature Ωijk of the face. In
the smooth case if we would compute the index in the neighbourhood of an isolated
zero it would return us the index of the zero. However, being in a discrete setting, a
triangle is the smallest possible neighbourhood we can compute the winding number
from. The rotation form ξ can also not determine how many times ηij rotated φi
along the edge ij as it is bound to (−π, π).

Lemma 12. If (L, η,Ω) is hermitian line bundle on a closed simplicial complex
M , φ ∈ Γ(L), c ∈ C \ {0}. Let ijk be a triangle in M . Then indcφijk = indφijk ∈ Z

Proof. Every unitary map η : C −→ C rotates each individual element φi precisely by
the amount given in the rotation form. This way it can be shown that ηki ◦ ηjk ◦ ηij =
eiξ

φ
ij+iξ

φ
jk

+iξφ
ki

exp(i2πindφijk) = exp(i(ξφki + ξφjk + ξφij) + iΩijk) = ei(ξ
φ
ki

+ξφ
jk

+ξφij)

e−iΩijk
= ...

... = eiξ
φ
ijeiξ

φ
jkeiξ

φ
ki

e−iΩijk
= ηki ◦ ηjk ◦ ηij

e−iΩijk
= 1⇒ i2πindφijk = 0 (mod 2πi)⇒ indφijk ∈ Z

where we used the definition of the curvature 2-form from Ω (def: 3) in the last line.
To show the invariance under multiplication by c we just need to apply lemma 10

inside the definition.
indcφijk = 1

2π (dξcφijk + Ωijk) = 1
2π (dξφijk + Ωijk) = indφijk
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4. Discrete Index Approach

If we are given a simplicial simplex but no curvature and we we define our own one
(sec: 2.3) then ξφki, ξ

φ
jk, ξ

φ
ij ∈ (−π, π], Ωijk ∈ (−π, π) and thus indφijk ∈ {−1, 0, 1} as

the only possible solutions.

4.2. Section Zeros and Density
The link to the zeros of vector fields is established by a discrete analogous version

to the Poincare-Hopf index formula that we will now establish for closed surfaces.

Theorem 13 (Discrete closed index formula). Let (L, η,Ω) be a discrete hermitian
line bundle on a closed simplicial complex M , φ ∈ Γ(L). Define F := {ijk :
ijk is face of M}. Then

∑
ijk∈F

indφijk = 1
2π

∑
ijk∈F

Ωijk =: deg(L)

Proof.

∑
ijk∈F

1
2πΩijk =

∑
ijk∈F

(
indφijk −

1
2πdξ

φ
ijk

)
=

∑
ijk∈F

indφijk −
1

2π

=0︷ ︸︸ ︷∑
ijk∈F

dξφijk

The cancellation in the sum happens due to ξφji = −ξφij and every edge orientation
appearing once in the sum because M is a closed surface.

Since M together with our hermitian line bundle L mimics a smooth surface with
connection, we are motivated to interpret the indφijk as the signed sum of indexes of
the zeros inside the triangle ijk . The following remark links the discrete setting with
the smooth setting to extract to smooth’s setting interpretation.

18



4.3. Random Section Smoothing

Remark 1. The main reason to justify that the discrete index indφijk represents
the signed sum of indices inside the triangle ijk is the smooth analog theorem
involving differential geometry that was proven in [KP15].

Theorem
Let L be a smooth hermitian line bundle with connection ∇ on a manifold
M . Let Ω be its curvature form, φ ∈ Γ(L) a smooth section, ξφ its rotation
form and Z be the discrete set of zeros. If C is a finite smooth 2-chain with
∂C ∩ Z = ∅, then

2π
∑

p∈C∩Z
indφp =

∫
∂C
ξφ +

∫
C

Ω

If we replace C by the triangle ijk we see the smooth analog to our discrete attempt.
Even though the information acquired in the discrete setting is incomplete, by
seeing how the smooth rotation form ξ and the smooth curvature Ω relate to the
indices we can mimic this with our discrete replacements of ξ and Ω.

In the discrete setting if we are not given Ω, then indφijk is only a weak approximation
since a mesh that has not been triangulated fine enough would group zeros together
and possibly make them cancel each other out or raise the index above the measurable
because of the bounded curvature (sec: 2.3). That however, is the inevitable nature
of discrete set ups that lost information in between the vertices and a replacement
can only be guessed using reasonable assumptions. But if we are given the 2-form Ω
this becomes a better approximation.

Hence we can finally define what we wanted to compute all along:

Definition 14 (Density). Let L be a hermitian line bundle on a closed oriented
simplicial complex M and φ ∈ Γ(L), then we define the zero density of φ on the
face ijk of M as

Zijk(φ) :=
indφijk

Area(ijk)

Once again, the finer the triangulation the mesh is the more accurate this density
becomes to the smooth case. This expression is also invariant under non-zero section
multiples cφ, c ∈ C \ {0}.

4.3. Random Section Smoothing
Now the time has to come to unite the tools established in this and the previous

chapters to attempt to fulfill this thesis’ purpose: to compute the expected sum of
indexes on each triangle of smoothed random hermitian line bundle sections on a
2-dimensional surfaces.
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4. Discrete Index Approach

Definition 15 (Random Section). Let {ϕi}i=1,...,n form an orthonormal basis
of eigenvectors of ∆. And let X be a non-vanishing normalized section ∈ Γ(L).
φ = ∑n

i=0 φiϕi ∈ Γ(L) is our random section if 〈φ, ϕ〉 = xl + iyl ∈ C where xl
and yl are real, independent and normal distributed. zl := xl + iyl is the random
variable of the sum and has p : R −→ R as its probability density function.

Since {ϕi}i=1,...,n forms an orthonormal basis we can be certain that the resulting
φ will be as randomly distributed as with any other orthonormals basis such as the
canonical one. The choice of the eigenvector basis will make our computations easier.
Therefore smoothing a random section simplifies to:

Stφ =
n∑
i=1

φiStϕi =
n∑
i=1

e−tλiziϕi

So for fixed t > 0 the density of indexed zeros in the triangle ijk of a random
section can be computed by

Zijk(Stφ) = Zijk

(
n∑
l=1

e−tλlzlϕl

)

which is why, by integrating over C for each zl, the expected density of indices can
be expressed as:

∫ ( n∏
l=1

p(zl)
)
Zijk

(
n∑
l=1

e−tλlφlϕl

)
dz1...dzn

Returning to our desire to let t run to ∞ we can apply the convergence result
established in theorem (8). This is possible due to the fact that non-zero complex
multiples of sections do not change the number of zeros as shown in lemma 12
and thus any representative of [Stφ] has the same zeros. Additionally, since the
(Zl) arise by normal distributions, the probability that (Z1) = 0 is zero. Therefore
imin := min{i ∈ N |Zi 6= 0} equals to 1 with probability 1 and in the density
computation from the theorem we can calculate with imin = 1. Hence we simplify the
density to:

∫ ( n∏
l=1

p(zl)
)
Zijk

dim(Eig(λimin ))∑
l=1

e−tλlzlϕl

 dz1...dzn

This expression only handles one eigenvalue multiple times (λ1 = ... = λdim(Eig(λimin ))).
So we can move e−tλl in front of the sum and then remove it from the density function
since e−tλl 6= 0 and non-zero multiples do not affect the number of zeros of a (lemma
12). Those integrals who’s zl influence vanishes integrate to 1.
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4.3. Random Section Smoothing

∫ dim(Eig(λimin ))∏
l=1

p(zl)

Zijk
dim(Eig(λimin ))∑

l=1
zlϕl

 dz1...dzdim(Eig(λimin )) (4.1)

In most cases, especially when the geometry was not generated by some parametric
equations, all eigenvalues are unique (as in a random sample from a continous
spectrum). Therefore we will usually face dim(Eig(λ1)) = 1.

Assume that dim(Eig(λ1)) = 1 which would again simplifies the computations to:∫
p(z1)Zijk (z1ϕ1) dz1 =

∫
p(z1)Zijk (ϕ1) dz1 = Zijk (ϕ1)

This can be interpreted as a deterministic behaviour of the zeros of smoothed
sections on closed surfaces whose smallest eigenvalue λ1 only appears once. The
resulting expected density of indexed zeros for each triangle ijk can then be combined
to view globally where the zeros distribute.
If dim(Eig(λ1)) > 1 we do not get a deterministic behaviour, but rather an even

distribution along the possible zeros with linear combinations from Eig(λ1). However,
I did not manage to simplify expression (4.1).
At last let us think about what happens if we smooth nothing i.e. set t = 0 in St.

Since the area is independent of t let us focus on the average index on a triangle ijk.
Let p(φ) be the probability distribution of sections dependant on Z1, ..., Zn as in the
definition above.

∫ ( n∏
l=1

p(zl)
)
indijk

(
n∑
l=1

φlϕl

)
dz1...dzn =

∫
Γ(L)

p(φ)indφijkdφ

= 1
2π

∫
Γ(L)

p(φ)
(
ξφij + ξφjk + ξφki + Ωijk

)
dφ

= 1
2π

∫
Γ(L)

p(φ)ξφijdφ︸ ︷︷ ︸
=0

+ 1
2π

∫
Γ(L)

p(φ)ξφjkdφ︸ ︷︷ ︸
=0

+ 1
2π

∫
Γ(L)

p(φ)ξφkidφ︸ ︷︷ ︸
=0

+ 1
2π

∫
Γ(L)

p(φ) Ωijk︸︷︷︸
const.

dφ

= Ωijk

2π

∫
Γ(L)

p(φ)dφ = Ωijk

2π
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4. Discrete Index Approach

where the zeros happen due to ξφij taking every possible value just as often positve
as negative.
This shows that the average signed number of zeros of random not yet smoothed

vectorfields are dependant on the curvature 2-form Ω as well as the area of the triangle
ijk.

Average value of Zijk(S0φ) = Ωijk

2πArea(ijk) (4.2)
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5. Integral Geometry Approach

The discrete index approach from the previous chapter struggles with obtaining an
evident solution for the cases where dim(Eig(λ1)) > 1. We need to find a different
approach to the expression (4.1) that I did not manage to simplify. In this chapter
we will cover an integral geometric approach to obtain an expression of the density of
zeros with sign and multiplicity which serves well for dim(Eig(λ1)) > 1.
The derivation of the solution is in its idea similar to the proof of the Cauchy-

Crofton formula [San04], which links the number intersections of all lines with a curve
to the length of the curve. We will now set up the tools to perform something similar.
To do this properly with transparent intuition we will establish the basic idea first.

5.1. Basic Idea
Let’s take a non-vanishing normalized base section X ∈ Γ(L). We also require

special sections:

Definition 16 (Delta section). The delta section for a vertex i from a simplicial
complex M is define as

δi ∈ Γ(L) : ∀φ ∈ Γ(L)⇒ 〈〈δi, φ〉〉 = 〈Xi, φi〉 ∈ Li

For Γ(L) the set {δi : i ∈ V } is similar to the canonical basis {ei : i = 1, ..., n} of
Cn. According to the inner product from definition (5) {δi : i ∈ V } is a orthonormal
basis since

〈〈δi, δj〉〉 =


1 , i = j

0 , i 6= j

The linear function 〈δi, . 〉 also serves as en evaluator at vertex i since if φ =∑n
i=1 ziXi ∈ Γ(L) then

〈〈δi, φ〉〉 = 〈Xi, ziXi〉 = zi

Picking up a random section φ as in (def: 15), using the scalar product we see that
φ has a zero at p if and only if 〈〈δi, φ〉〉 = 0. Now by smoothing φ to Stφ and since St
is self adjoined we can express the scalar product as

0 = 〈〈δi, Stφ〉〉 = 〈〈
ψti :=︷︸︸︷
Stδi, φ〉〉 = 〈〈ψti , φ〉〉
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5. Integral Geometry Approach

Notice how 0 = 〈ψti , φ〉 can be interpreted as φ being orthogonal to ψti . Essentially
the condition that Stφ is zero at p is equivalent to the statement that ψti is inside
the hyperplane φ⊥ induced by φ. As φ was completely random, we basically seek an
expression of the average intersection volume between all hyperplanes and the section
ψti . This expression will link this problem to integral geometry.

However, the vertex set is discrete and the chance of having a zero right on a vertex
is zero. To keep the idea of identify zeros of faces with intersection with hyperplanes
we are now required to do a lot more work to formally work with this.

Lets keep in mind (again) that section multiplications by non-zero factors don’t affect
the zeros. Hence we can focus on the intersections of [ψt(p)] with all hyperplanes
inside CPn−1. This is especially useful because inside CPn−1 all hyperplanes are
oriented and unique, thus making the space of hyperplanes inside CPn−1 identifiable
with itself.

From here on we will focus on the computation of the zeros for an arbitrary triangle
in the simplicial complex M made by the neighbouring vertices ijk. Many of the
following results where archived with the help of Felix Knöppel’s notes [Kno15b] and
[Kno15a].

5.2. Embedding into CPn−1

First we will find a suitable embedding of the surface M of a simplicial complex
with n ∈ N vertices into CPn−1 because of its later use when identifying the zeros.
To do this, we will introduce the Kodaira correspondence taken from Franz Pedit’s
lecture2.
Let L be a smooth hermitian line bundle. First we define for each p ∈ M the

evaluation map evp : Γ(L) → Lp , ψ 7→ ψp that simply evaluates a section at the
point p. The adjoint map is ev∗p : L∗p → Γ(L) and the Kodaira correspondence is then
defined as the embedding

f : M → P(Γ(L)∗), p 7→ ker ev∗p
Recall that if 〈., .〉 : Γ(L) × Γ(L) → R is the canonical pairing (if λ ∈ L∗p ⇒

〈ev∗pλ, ψ〉 = λ(ψp)), then we can use that ker evp = (img ev∗p)⊥.
This way we see that this embedding perfectly suits the interpretation that we

made in section (5.1) about the zeros of a section being inside a hyperplane.

Lemma 17. The Kodaira correspondence f links the zeros of a section ψ ∈ Γ(L)
with the intersection points of f(p) with the hyperplane [ψ⊥].

Proof. W.l.o.g. let p ∈M be any point and ψ ∈ Γ(L) any section.

ψp = 0⇔ ψ ∈ ker evp ⇔ ψ ∈ (img ev∗p)⊥ ⇔ img ev∗p
def= f(p) ⊂ [ψ⊥]⇔ f(p)∩[ψ⊥] 6= ∅

2https://www2.le.ac.uk/departments/mathematics/extranet/staff-material/
staff-profiles/kl96/stuff/cseminar.pdf
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5.2. Embedding into CPn−1

Thus a section ψ has a zero at p if and only if f(p) ∈ [ψ⊥].

But that happens in a smooth setting. To connect this in the discrete setting
we need to start with the same embedding but only defined in the vertices of the
simplicial complex M with vertex set V .

f : V → P(Γ(L)∗), i 7→ img ev∗i
Next we want to extend this by mapping the edges of M through a simple demand:

the edges of M are mapped to geodesics in CPn−1 where n is the number of vertices
in M .
By selecting a non-vanishing base section X of the sections Γ(L) of a discrete

hermitian line bundle (sec: 2.4) we can identify Γ(L) with Cn and thus identify
P(Γ(L)∗) with CPn−1. This is why we see the Kodaira correspondence as an embedding
into CPn−1.

If we had a smooth setting we would work with the Fubini-Study metric as mentioned
in (sec: 2.4), but in the discrete setting it’s analog is the discrete section product
defined in (def: 5) which we will focus on from now on.
For every vertex i ∈M we also define a piecewise linear hat functions xi to carry

the value 1 at the vertex i and to linearly decent to 0 when approaching other vertices.
We define the construction of the extension of the discrete Kodaira correspondence in
the following lemma.

Lemma 18 (Geodesic extension). Let f be the Kodaira correspondence to a
simplicial complex M and L be a discrete hermitian line bundle on M . If η is a
discrete connection on L and i, j are neighbouring vertices, we can extend the
Kodaira correspondence on the edge ij through

fij := [xiψ∗ + xjη
∗
jiψ
∗] , for 0 6= ψ∗ ∈ L∗i

to define a piecewise smooth extension of f such that the image of the edge ij is
a geodesic.

Proof. Since L is a hermitian line bundle we know that ηij = rijId for some rij ∈ C
with |rij | = 1. fij(i) = [φ∗i ], fij(j) = [rjiφ∗j ] = [φ∗j ]. xiφ+xjη

∗
jiψ
∗ resembles a straight

line with φ∗i ⊥ φ∗j according to the discrete section product, which is why its projection
is a geodesic.

Now we want to think about the extension of the discrete Kodaira correspondence
f onto the faces ijk where i, j, k are three neighbouring vertices on M . But before
attempting that we define ourselves the geodesic triangle 4 := {[x], [y], [z]} as the
triangle spanned by geodesics between the three points [x], [y], [z]. Thanks to the
geodesic extension of the Kodaira correspondence looking at this geodesic triangles
now becomes relevant since f embeds faces ijk to geodesic triangles. Let’s define the
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5. Integral Geometry Approach

Definition 19 (Shape invariante). If [x], [y], [z] ∈ CPn−1, then the shape invariant
associated to the geodesic triangle |4| = {[x], [y], [z]} is defined as:

Υ(|4|) = Re
(〈〈x, y〉〉C〈〈y, z〉〉C〈〈z, x〉〉C
〈〈x, x〉〉C〈〈y, y〉〉C〈〈z, z〉〉C

)
.

The invariance is evident when noticing how orthogonal transformations are eaten
up by the scalar products and scalar multiplications are canceled by the fraction.
By the Fubini-study metric the lengths of the edge between [x] and [y] are given by
arcos

(
|〈x,y〉|
|x||y|

)
as established in (sec: 2.4). Thus

∣∣∣∣〈〈x, y〉〉C〈〈y, z〉〉C〈〈z, x〉〉C〈〈x, x〉〉C〈〈y, y〉〉C〈〈z, z〉〉C

∣∣∣∣ =
∣∣∣∣ 〈〈x, y〉〉C〈〈y, z〉〉C〈〈z, x〉〉C||x|| ||y|| ||y|| ||z|| ||z|| ||x||

∣∣∣∣ = | cos(a) cos(b) cos(c)|

and thus there is a suitable 0 ≤ ω4 < 2π such that

〈〈x, y〉〉C〈〈y, z〉〉C〈〈z, x〉〉C
〈〈x, x〉〉C〈〈y, y〉〉C〈〈z, z〉〉C

= cos(a) cos(b) cos(c)eiω4

Like the shape invariant Υ this is still an invariant. We know that ω4 is related to
the Kähler form σ that we define in sec. (5.4) by the following formula from [HM94a]
[HM94b]:

ω4 = 2
∫
4
ωK mod 2πZ (5.1)

Note how we cannot specify the value here up to multiples of 2πZ. This causes
the exact same uncertainty that we got with the discrete approach where the indijk
was only able to pick values from {−1, 0, 1} if we where not given a 2-form Ω with
the line bundle L (lemma: 12). If we are given Ω then we can adjust ω4 to take
values beyond the bounds fo [0, 2π) for a more precise answer. Formally approaching
it this way will bear the fruit of a far more compact expression for the expected sum
of indices on each triangle when we will complete the calculations in section (6.1).
Once we embed the vertices and edges of a simplicial complex into a geodesic

triangle 4 = {[x], [y], [z]} ⊂ CPn−1 we can use the formula (5.1) to compute the
integral of the Kähler form as

2
∫
4
ωK = ω4 mod 2πZ (5.2)

= arg

(〈〈x, y〉〉C〈〈y, z〉〉C〈〈z, x〉〉C
〈〈x, x〉〉C〈〈y, y〉〉C〈〈z, z〉〉C

)
mod 2πZ (5.3)

= arg(〈〈x, y〉〉C〈〈y, z〉〉C〈〈z, x〉〉C) mod 2πZ (5.4)
= ( arg(〈〈x, y〉〉C) + arg(〈〈y, z〉〉C) + arg(〈〈z, x〉〉C) ) mod 2πZ (5.5)
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5.3. About the Transformation Formula

The modulo 2πZ will deny us the exact solution if you are not given the 2-form Ω,
but it is no surprise that a more exact solution is perhaps not possible given a discrete
setting where the face inside the geodesic triangle was not specified. The shape of
the inside of the triangle determines the exact solution but there is no trivial way to
extend the Kodaira correspondence to the faces. Note also that if w.l.o.g. x ⊥ y that
the computation involving the argument will be not determinable. This will not pose
a problem later on since even a tiny amount of smoothing will solve this. Visually
x ⊥ y means that the geodesic triangle is not unique in these situations.
However, if we posses a simplicial complex M with a line bundle L together the

curvatures Ωijk we can make a more reasonable guess about the integral. This will be
done in section (6.1).

5.3. About the Transformation Formula
Before we continue to tackle the intersection of hyperplanes problem we need to

establish some calculus tools. A basic theorem from calculus goes as follows:

Theorem 20 (Transformation formula). If U ⊂ Rn open, φ : U → Rn is injective
and smooth and f : φ(U)→ R is integrable by the Lebesgue measure λ.
Then f ◦ φ is integrable on U and∫

φ(U)
f λ =

∫
U

(f ◦ φ) · | det(dφ)|λ

What if we drop the requirement for φ to be injective? Then p ∈ φ(U) might have
more than one pre-image, thus making the set U carry redundant values for φ(U).
We can however compensate this by defining νφ : φ(U)→ Z , p 7→ #φ−1(p) and use
νφ to count the function values multiple times according to their frequency in the
pre-images. Figure (5.1) shows what is meant when covering values multiple times.

If we then additionally express this in terms of general smooth manifolds we get

Figure 5.1.: Example how ϕ : U → ϕ(U) can have multiple preimages that have to be
considered. Image from [Kno15b].
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5. Integral Geometry Approach

Theorem 21 (Manifold transformation formula). Let M,N are compact ori-
entable Riemannian manifolds of equal dimension, φ : M → N smooth and |ωN |
the density of N . If f : φ(M)→ R is |ωN |-integrable then∫

φ(M)
f · νφ |ωN | =

∫
M
|φ∗ωN |

where φ∗ is the pullback of φ.

However, we can modify this formula even more to get rid of the absolute values on
both sides. A basic derivation reveals that if ωM , ωN are the volume forms of M and
N , then

φ∗ωN = det(dφ)ωN
which is why we need to define

νsφ : φ(M)→ Z , p 7→
∑

q∈φ−1(p)
sign(det(dqφ))

If we remove the absolute value sign on the right hand side of the last transformation
formula theorem (21) we need to compensate the sign change on the left hand side
as well, namely by counting the overall positive occurrences as well as the negative
occurrences of det(dφ), precisely by replacing νφ with νsφ.

We see that νsφ = νφ if we inserted | det(dφ)| instead of det(dφ) inside the definition
as long as det(dqφ) 6= 0. The case det(dqφ) = 0 does not bother us because this occurs
only on a null set, thus not altering the outcome of the integral.

By additionally taking f ≡ 1 we acquire the following theorem that is essential for
the next section.

Theorem 22 (Signed manifold transformation formula). Let M,N be compact
orientable Riemannian manifolds of equal dimension, φ : M → N smooth and
ωM , ωN the respective volume forms of M,N . Then∫

φ(M)
νsφωN =

∫
M
φ∗ωN =

∫
M

det(dφ) · ωM

5.4. Complex Vector Spaces and Kähler Angles

Before we can apply the modified transformation formula we need to explain what
Kähler angles are and their basic environment needed to define them.

Just as we often identify C with R2 we can identify any complex vector space with
a real vector space V of a dimension twice as big, but to maintain the multiplicative
structure that the imaginary unit i causes in Cn we need to define the almost complete
structure J : V → V as a linear map with J2 = −Id which represents the multiplication
by the imaginary unit i. A hermitian vector space is a complex space with an euclidean
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5.4. Complex Vector Spaces and Kähler Angles

inner product 〈., .〉 such that J is orthogonal. The hermitian inner product can be
written as

〈a, b〉C = 〈a, b〉+ i 〈Ja, b〉︸ ︷︷ ︸
σ(a,b):=

, ∀a, b ∈ V

And we call σ the Kähler form of V . Note that if a ∈ V → a ⊥ Ja since
〈Ja, a〉 = 〈JJa, Ja〉 = 〈−a, Ja〉 = −〈Ja, a〉 with the euclidean product.

Definition 23 (Kähler angle). Let P be a 2-dimensional real plane in a complex
vector space with Kähler form σ. The Kähler angle is defined as ηP ∈ [0, π] such
that cos ηP = σ(X,Y ) for any oriented orthonormal basis X,Y of P .

The choice of oriented orthonormal basis is arbitrary since σ is invariant under
orientation preserving rotations in the plane P. Let us see this using θ ∈ [0, 2π)

σ(cos θX − sin θY, sin θX + cos θY ) = cos θ sin θ 〈JX,X〉︸ ︷︷ ︸
=0

+ cos2 θ〈JX, Y 〉

− sin θ cos θ 〈JY, Y 〉︸ ︷︷ ︸
=0

− sin2 θ 〈JY,X〉︸ ︷︷ ︸
=−〈JX,Y 〉

σ(X,Y ) = 〈JX, Y 〉

We say that a 2-dimensional plane P is a complex line if ηP ∈ {0, π} (⇒ JP = P )
and real plane if ηP = π

2 (⇒ JP ⊥ P ). The real planes are those in the image of the
inclusion map from Rn → Cn. So the Kähler angle measures the degree of divergence
from being a purely complex line.

We will let P be a real 2-dimensional plane in V, which is a hermitian vector space
by inheritance. If we now take a positively oriented orthonormal basis X,Y ∈ P then
we can define a plane bound complex structure JP by:

JP : P → P, JPX = Y , JPY = −X

Theorem 24. Let X,Y be a positively oriented basis of a 2-dimensional real
plane P in a complex vector space V. Let πP : V → P be the orthogonal projection
on P and J |P the restriction of J to P . Then the plane bound complex structure
JP fulfils:

πP ◦ J |P = cos ηP · JP

Proof. Since Z ∈ P write Z = 〈X,Z〉X + 〈Y,Z〉Y .
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5. Integral Geometry Approach

Figure 5.2.: Example how X is mapped by J and JP . Image from [Kno15b]

πP ◦ J |P (Z) = πP ◦ J(〈X,Z〉X + 〈Y, Z〉Y
= 〈X,Z〉πP (JX) + 〈Y,Z〉πP (JY )

= 〈X,Z〉

〈X, JX︸ ︷︷ ︸
=0

〉X + 〈Y, JX〉Y

+ 〈Y,Z〉

〈X, JY 〉X + 〈Y, JY 〉︸ ︷︷ ︸
=0

Y


= 〈X,Z〉〈Y, JX〉Y + 〈Y, Z〉〈X, JY 〉X
= cos ηP 〈Y,Z〉 −X︸︷︷︸

=JPY

+ cos ηP 〈X,Z〉 Y︸︷︷︸
=JPX

= cos ηPJP (〈X,Z〉X + 〈Y,Z〉Y ) = cos ηPJP (Z)

So if Z ∈ P then πP ◦ J |P (Z) = cos ηPJP (Z).

Figure (5.2) shows how this theorem (24) can be understood.
If Q is a subspace of V we define πQ as the orthogonal projection on Q. With this

we can set up the following

Lemma 25. Let X,Y be a positively oriented basis of a 2-dimensional real plane
P in a complex vector space V. If ηP /∈ {0, π} then ∃ 2-dimensional real subspace
Q ⊥ P such that P ⊕Q = P +JP and a orientation preserving orthogonal matrix
A with πQJ |Q = sin ηPA and

J |P+Q =
(

cos ηP JP − sin ηP A∗

sin ηP A − cos ηP JQ

)

Proof. If ηP /∈ {0, π} then JP ∩ P 6= P and JP + P is 4 dimensional real linear
space with in inherited Euclidean product. So we can find an orientation preserving
orthogonal basis X,Y, Z,W of JP + P such that X,Y ∈ P and Z,W ∈ P⊥. Q :=
span(Z,W ). Then if b ∈ P with unit length we get

1 = |Jb|2 = |πP (Jb)|2 + |πQ(Jb)|2 = cos2 ηP + |πQ(Jb)|2︸ ︷︷ ︸
⇒=sin2 ηP
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5.5. Average Intersection with Hyperplanes

Thus πQ◦J |P = sin ηPA for some orthogonal map A : P → Q with JQ = A◦JP ◦A∗
since J is orthogonal. Thus JP+Q is an endomorphism and can be written in matrix
form as such that for Z ∈ P ⊕Q⇒

J |P+Q(Z) =
(

cos ηPJP − sin ηPA∗
sin ηPA − cos ηPJQ

)
·
(
πP (Z)
πQ(Z)

)

Hyperplanes in CPn can be oriented and therefore we can define the signed inter-
section of hyperplanes with surfaces. The canonical orientation of Cn+1 can be given
by taking any basis z1, ..., zn+1 and defining the orientation of the real R2n+2 space
by the n-form z1 ∧ Jz1 ∧ ... ∧ zn+1 ∧ Jzn+1.
Let, M be an 2-dimensional oriented surface. f : M → CPn. For p ∈ M and

X,Y ∈ TpM positive oriented we let dpf(X), dpf(Y ) span the two dimensional real
plane inside TpCPn. We now extend dpf(X) ∧ dpf(Y ) by v1 ∧ ... ∧ v2n−2 with a
positively oriented basis {v1, . . . ., v2n−2}of the hyperplane h = span(v1, . . . , v2n−2)
that intersects f(p) to determine the sign of the intersection. If span(dpf(X), dpf(Y )∩
h 6= ∅ It can only acquire the values ±1, and 0 if there is no intersection. If
dpf(x), dpf(x) lie inside a hyperplane then the sign is not defined. However, for our
purpose this will be of no concern since the set of hyperplanes that do that form a
null set and take no effect in the later integral. We denote the sign of the intersection
by #±(h ∩ f(p)) and #±(h ∩ f(M)) = ∑

p∈M #±(h ∩ f(p)).
And now we can see that the orientation of the intersection depends on the Kähler

angle. To see that

dpf(X), dpf(Y ), v1, ..., v2n−2

is positive oriented we need to know if 〈(Jdpf(X), dpf(Y )〉 = cos ηP has a pos-
itive sign or not for P = spanR(dpf(X), dpf(Y )) because if cos ηP > 0, then
Jdpf(X), dpf(Y ) point in the similar direction as {z, Jz} would in the canonical
orientation that we defined above. If cos ηP < 0 we have a negative orientation more
like {z,−Jz}.

5.5. Average Intersection with Hyperplanes
Now the times has come to unite the section about transformation formulas together

with the knowledge on Kähler angles. This section will dedicate itself exclusively to
the proof of a crucial theorem needed to find an expression for the expected sum of
indices on a face. We separate this from the rest due to it being the integral geometric
core of this thesis.
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5. Integral Geometry Approach

Theorem 26. Let f : M → CPk be an embedding of a oriented Riemannian
surface. 2 ≤ k ∈ N. Let Hf := {hyperplanes h ⊂ CPk that intersect img(f)}
and dA be the surface area element of the surface. Then∫

h∈Hf
#±(h ∩ f(M))dK = 1

2π

∫
M

cos η(f(p))dA

where η(f(p)) is the Kähler angle of the real plane spanned by dpf(X), dpf(Y )
for a positve oriented orthogonal basis X,Y of TpM .

Proof. In a nutshell this is a special case of the signed manifold transformation formula
of theorem (22). To see this we need to find a parametrization φ : E → H of some set
E such that the image img(φ|E) is the set of hyperplanes that intersect the surface.
Remember that when we defined the signed intersection that we mentioned that
there could be a problem if dpf(X), dpf(Y ) are inside a hyperplane? This won’t be a
problem here since the set of hyperplanes that may do so form a null set and can be
ignored due to the integral later.

Remember that we can identify any hyperplane in CPk with CPk itself. A suitable
set for the domain of φ is E = f∗P(TCPk) which is the pull back bundle of CPk by f
that has been projectivised by the natural C-projectivation P. If U ⊂M we write

EU := { {p} × P(Tf(p)CPk) : p ∈ U}, E := EM , Ep := {p} × P(Tf(p)CPk)

We use this set to define the function φ : E → H as:

for 0 6= ξ ∈ f(p) ∈ CPk ψ ∈ Ck+1/f(p) φ(p, [φ]) := [|ξ|2ψ − 〈ξ, ψ〉Cξ]

where we compute 〈ξ, ψ〉C in homogeneous coordinates which works fine since we
can easily verify that the full expression is well defined. The definition of φ aims to
be suitable for the signed manifold transformation formula.

Lets make sure that φ(E) = Hf .
“⊆“ If τ ∈ φ(E) ⇒ ∃p ∈ M, ξ ∈ f(p), ψ ∈ Cn+1/f(p) : τ = [τ̂ ] = [|ξ|2ψ −

〈ξ, ψ〉Cξ] ⇒. To see that f(M) ∩ τ 6= ∅ we can w.l.o.g. take ξ ∈ f(p) again and
compute the scalar product

〈|ξ|2ψ − 〈ξ, ψ〉Cξ, ξ〉 = |ξ|2〈ψ, ξ〉 − 〈ξ, ψ〉C〈ξ, ξ〉 = 0

“⊇“ If we are given h ∈ Hf ⇒ ∃p ∈M : h ∩ f(p) 6= ∅. So if ξ ∈ f(p) and [ĥ]⊥ = h

then 〈ĥ, ξ〉C = 0. W.l.o.g. pick |ξ| = 1 and ψ = ĥ ∈ Ck+1 and

[ĥ] = [12ĥ−

=0︷ ︸︸ ︷
〈ξ, ĥ〉C ξ] = |ξ|2ψ − 〈ξ, ψ〉Cξ ⇒ h ∈ img(φ|E)

thus h is in Tf(p)CPn and this concludes why φ(E) = H. Our goal would be to be
able to apply theorem (22) to get the following chain of equalities:
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5.5. Average Intersection with Hyperplanes

∫
h∈H|f

#±(h∩f(M))dK !=
∫
φ(E)

νsφ ωCPk =
∫
E
φ∗ωCPk =

∫
M

∫
Ep

det(dpφ)dA∧ωCPk−1

(5.6)
But we can only show “ !=“ after further computations, namely the computation of

det(dφ).
Let ε > 0, a ∈ R. The differential of a curve γ : (a− ε, a+ ε)→ CPk at a has to be

independant of any scalar multiplication λ : (a− ε, a+ ε)→ C if γ = [λγ̂]. So

γ′ has to be equivalent to [λ′γ + λγ′].

This is why we see differentials as an elements of HomC(γ(a),Ck+1/γ(a)) which we
then identify with TaCPk. We denote the differential of γ at a by γ̇(a).

In order to differentiate φ we need to write φ into a form that is more suitable for
differentiating by using coordinates in a local neighbourhood U ⊆M around a fixed
point q and a lift into Ck+1. Define Hp := {x ∈ CPk : f(p) ⊥ x} = f(p)⊥ and let
ξ : U → ψ +Hq. In the following the point q is fixed and p is the variable.

φ̂ : U ×Hp → Cn+1, φ̂(p, ψ) := |ξ(p)|2ψ − 〈ξ(p), ψ〉Cξ(p)

With ξ(p) ∈ f(p). |ξ(q)| = 1. We constructed it this way to earn the commutation
of φ ◦ πU = [φ̂].

U ×H φ̂−−−−−→ Cn+1

πU

y y[.]

E|U
φ−−−−−→ CPn

Differentiating φ̂ with a curve (p(t), ψ(t)) such that p(0) = q, ψ(0) = ψ and
indicating this with a dot ṗ, ψ̇ will lead to

dφ̂(ṗ, ψ̇) = d(
=|ξ|2︷ ︸︸ ︷

〈ξ(p), ξ(p)〉ψ)− d(〈ξ(p), ψ〉Cξ(q))
= 2 〈dξ(ṗ), ξ(q)〉︸ ︷︷ ︸

=0

ψ + 〈ξ(q), ξ(q)〉︸ ︷︷ ︸
=1

ψ̇

− 〈dξ(ṗ), ψ〉Cξ(q)− 〈ξ(q), ψ̇〉C︸ ︷︷ ︸
=0

ξ(q)

− 〈ξ(q), ψ〉C︸ ︷︷ ︸
=0

dξ(ṗ)

= ψ̇ − 〈dξ(ṗ), ψ〉Cξ(q)

where the underbraces are evident due to ψ, ψ̇, dξ(ṗ) ∈ ξ(q)⊥. Hence the linear
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5. Integral Geometry Approach

map dφ̂ : TqU ⊕Hq → H⊥q ⊕Hq must have the form

( −〈dξ(ṗ), ψ〉C 0
0 idHq

)
, ⇒ det dϕ̂ = det〈dξ, ψ〉C

Thanks to [Kno15b] we can also make a statement on the following isometry:

“Since the Fubini-Study metric on TqCPk = HomC
(
f(q),Ck+1/f(q)

)
=

HomC(f(q), H) is given by the Frobenius norm and |φ0| = 1, it coincides
with the metric on H. Thus if furthermore |ψ| = 1 the same argument
shows that the maps in the following diagram are isometric:”

TqM ⊕Hq
dφ̂−−−−−→ Tφ̂(q,ψ)C

k+1

πTqM

y y[.]

E(q,φ)
φ−−−−−→ T(φ(q,[φ])CPk

Thus we conclude that

ϕ∗ωCPk |(q,[ψ]) = det〈dqξ, ψ〉C dA ∧ ωCPk−1 |(q,[ψ])

Now we can apply theorem (24) for P = img dqξ to compute det〈dqξ, ψ〉C. First
note that

〈JPdqξ, Jψ〉 = 〈JPdqξ, πPJ(πP (ψ) + πQ(ψ))〉
= cos ηP 〈JPdqξ, JPπP (ψ)〉 − sin ηP 〈JPdqξ, A∗πQ(ψ)〉
= cos ηP 〈dqξ, ψ〉 − sin ηP 〈AJPdqξ, ψ〉

and consequently if we transform ψ 7→ Jψ we get.

〈JPdqξ, ψ〉 = − cos ηP 〈dqξ, Jψ〉+ sin ηP 〈AJPdqξ, Jψ〉

To compute the determinant we take any orthogonal basis and derive the determinant
from its representative matrix. Thus, for some X = ṗ ∈ TpM such that |X| = 1, we
obtain the basis {X, JX} and compute

det〈dqξ, ψ〉C = 〈JPdξ(X), ψ〉〈dξ(X), Jψ〉 − 〈dξ(X), ψ〉〈JPdξ(X), Jψ〉
= (− cos ηP 〈dξ(X), Jψ〉+ sin ηP 〈AJPdξ(X), Jψ〉

)
〈dξ(X), Jψ〉

− 〈dξ(X), ψ〉
(
cos ηP 〈dξ(X), ψ〉 − sin ηP 〈AJPdξ(X), ψ〉

)
= − cos ηP

(
〈dξ(X), ψ〉2 + 〈dξ(X), Jψ〉2)

+ sin ηP
(
〈ψ,AJPdξ(X)〉〈dξ(X), ψ〉+ 〈Jψ,AJPdξ(X)〉〈dξ(X), Jψ〉

)
.
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5.5. Average Intersection with Hyperplanes

Let πQ, π[ψ] denote the orthogonal projections to Q and the complex subspace [ψ].
Since [φ] = spanR(φ, Jφ) we see that

〈dξ(X), ψ〉2+〈dξ(X), Jψ〉2 =
∣∣∣∣〈dξ(X), ψ〉 φ

||φ||
+ 〈dξ(X), Jψ〉 Jφ

||Jφ||

∣∣∣∣2 = |π[φ](dξ(X))|2

If we replace sin ηPA with πQJ then

det〈dqξ, ψ〉C = − cos ηP |ψ|2|π[ψ](dξ(X))|2

+ 〈ψ, πQJJPdξ(X)〉〈dξ(X), ψ〉+ 〈Jψ, πQJJPdξ(X)〉〈dξ(X), Jψ〉

Notice how 〈ψ, πQJJPdξ(X)〉〈dξ(X), ψ〉 ≡ 0 everywhere since in any situation,
ψ ∈ P,Q, (P ⊕Q)⊥, at least one term in the product will vanish.
So finally we can come back to the original computation we have been trying to

make for a long time. We divide the integral over the pullback bundle E up into each
base point p ∈M and its respective tangent space Ep.

∫
E
φ∗ωCPk =

∫
M

(∫
Ep

det〈dpξ, ψ〉C ωCPk−1

)
dA

=
∫

M
cos η

(∫
Ep
|ψ|2|π[ψ](dξ(X))|2ωCPk−1

)
︸ ︷︷ ︸

c:=

dA

= c

∫
M

cos η dA

where c is a constant coming from the fact that the integral∫
Sn−1
|ψ|2|π[ψ](%)|2

is independent of the choice of % ∈ Sn−1. Now we finally have the computations
visible to easily see that if p ∈M, h ∈ φ(Ep)⇒ the signed intersection #±(h∩f(p)) =
νφ(p) almost everywhere. See section (5.4, page: 31) to verify how the sign of cos ηP
affects the sign of the intersection to finally allow us to proof the “ !=“ equality of
equation (5.6). ∫

h∈H|f
#±(h ∩ f(M))dK =

∫
φ(E)

νsφ ωCPk

The idea behind it is the following: if the hyperplane h cuts f(p) in i ∈ N points,
then E will cover the same hyperplanes i times. Additionally, the sign of a single
intersection coincides as seen here:

#±(h ∩ f(p) = sign(cos η(f(p)) = sign(det(dpφ̂))
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5. Integral Geometry Approach

Now, since the kinematic measure is invariant under rotations, dK is a constant
multiple of ωCPn and there is a universal constant C such that∫

{h|h∩f(M)6=∅}
#±(h ∩ f(M)) dK = C

∫
M

cos η(f(p)) dA

As C is universal we can compute it by a specific example: Let f : CP1 → CPn be
some projective line. Then the Kähler angle is 0 everywhere. Since any two distinct
projective hyperplanes have exactly one positive intersection point we have

1 =
∫
h
dK =

∫
{h|h∩f(CP1)6=∅}

#±(h ∩ f(CP1)) dK

= C

∫
CP1

cos η(f(p))︸ ︷︷ ︸
=1

dA

= Area(CP1) · C
= 2π C ⇒ C = 1

2π

Which concludes the proof of the theorem.

This concludes the tool for the integral geometric approach. The application will
be handled in section (6.1).
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6. Solution and Discussion

Now that we have worked so much on tools and theorems to work with we will have
to put them all together in this section to finally express the average sum of indices.

6.1. Bringing Everything Together

Definition 27. Let 4 represent the triangle spanned by the 3 neighboring
vertices i, j, k ∈M where M is once again a closed simplicial complex in R3. Let
L be a discrete hermitian line bundle on M and n ∈ N be the number of vertices.
f : 4→ CPn−1 be an embedding, then for a section Γ(L) we define its index

Îijk(f) :=
∫
{h⊥|h∈CPn−1}

#±(h⊥ ∩ f(4)) dK

and thus the index density as

Ẑijk(f) := Îijk(f)
Area(ijk)

If f is the Kodaira correspondence we interpret Îijk(f) as the sum of indices. The
justification for the interpretation of this definition was established in lemma (17).

We now still want to derive a useful way of writing Îijk using all of the above results.

Îijk(f) =
∫
{[ψ]⊥|ψ∈Cn}

#±(h ∩ f(4)) dK (6.1)

=
∫
{h|h∩f(4) 6=∅}

#±(h ∩ f(4)) dK (6.2)

= 1
2π

∫
4

cos η(f(p)) dA m2 (6.3)

= 1
2π

∫
4
f∗σ dA (6.4)

= 1
2π (1

2ωf◦4 + πl) (6.5)
(6.6)

Lets look at what we did for each equation step by step respectively:

1. We applied the definition of Îijk(f).

2. Remove unnecessary hyperplanes from the integral since #±(∅) = 0.
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6. Solution and Discussion

3. This was the subject of the theorem in (5.5) and replacing k by n− 1.

4. Definition of Kähler form.

5. Here we used the equation (5.1) and defined l ∈ Z accordingly. ωf◦4 is the
embedding into a geodesic triangle in CPn−1. From now on we will omit the f
there and just just write ωf◦4 = ω4.

But due to the mod 2πZ issue we have to be very careful with the choice of l. This
arises from equation (5.1) in section (5.2). We have to look further to see what l must
be.
However, we have not yet even applied the smoothing operator St in these equa-

tions. Without applying the smoothing the result is fairly boring and ω4 won’t be
determinable by equation (5.2). We can use the above setting and modify it a little
to compute the zeros of the smoothed sections.

Remember from lemma (17) that the zeros of a section φ ∈ Γ(L) can be identified
with the intersection points of the Kodaira correspondence embedding of the surface
M into CPn−1 and the hyperplane [φ]⊥. For any t ≥ 0 this means that for the
smoothed section Stφ we know (homogeneous coordinates wherever necessary):

p ∈ kerStφ⇔ 〈f(p), Stφ〉 = 0⇔ 〈Stf(p), φ〉 = 0

And with the discrete Kodaira correspondence on each vertex i ∈ m we have
f(i) = [δi]. Remember that the main theorem from (5.5) did not require f to be the
Kodaira correspondence, which is why we can replace f 7→ [Stf ] and still use that
theorem and all of the equalities in (6.1). Thus:

arg(〈〈f(i), f(j)〉〉C〈〈f(j), f(k)〉〉C〈〈f(k), f(i)〉〉C)

= arg(〈〈Stδi, Stδj〉〉C〈〈Stδj , Stδk〉〉C〈〈Stδk, Stδi〉〉C) != ωt4

Where we just defined ωt4 in analogy to ω4 but for the geodesic triangle by the
vertices [St(i)], [St(j)], [St(k)]. It would be nice to use the equation (5.2) and just
continue the big equality (6.1) by replacing ωt4 with the above equality. However,
due to the mod 2π problem we have to guess l ∈ Z from the equations (6.1). Also
for t = 0 we can’t determine ω0

4 as arg(0) is not trivial. We can shift ωt4 to be in
(−π, π), and igrnore the rare equalities with ±π as they form a null set. We perform
the choice of l ∈ Z by taking into consideration the result of the discrete approach for
t = 0 in equation (4.2). The results in both approaches have to be equal and thus we
deduce that for t = 0

Îijk(Stf) = Ωijk

2π = 1
2π (1

2ω
0
4 + πl) ⇒ Ωijk

π
= 1

2πω
0
4︸ ︷︷ ︸

−1
2< <

1
2

+ l︸︷︷︸
∈Z
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6.1. Bringing Everything Together

l = round
(Ωijk

π

)
⇒ ω0

4 := 2(Ωijk − πl)

Where round : R→ Z is the rounding function to the nearest integer. This is only
true for t = 0. We expect that the zeros of sections move continuously on the surface
when smoothing the section since St is continous. From this we deduce that for small
t the chosen value of l will remain the same and we will have to compute ωt4 with the
above arg(. . . ) expression for t > 0. This is why we continue the equalities from (6.1)
as

Îijk(Stf) = 1
4πω

t
4 + 1

2round
(Ωijk

π

)

Notice that if we are not given a curvature 2-form Ω with the geometry, then the
connection η that we add our self as defined after definition (3) results in Ωijk ∈ (−π, π),
meaning that l = 0.
Next we have to address another problem for increasing values of t. ωt4 is still

trapped inside (−π, π). If t becomes big enough, the argument of the calculation of
the ωt4 expression will jump above or below of ±π, but this information will be lost
in the computation. To fix this we need to define that for t > 0 that ωt4 is not bound
by (−π, π), and that it recognizes if the increase of t just caused the argument to
move above π, and if so, continue without loosing that progress. In other words, we
want ωt4 to be a continuous function.

Let us look at an example to clear this thought up. If 0 < t1 ≈ t2, t1 < t2 and
ωt14 ≈ π and ωt24 ≈ −π, then the value of ωt24 should be replaced by ωt24 + 2π.

In our discrete computations, the only way to implement this is to increase t bit by
bit and compare each new value with his predecessor to determine what should have
been.
All in all put together we finally reach the expression we have aimed to get for so

long and will express this in the following theorem:
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6. Solution and Discussion

Theorem 28 (Average number of zeros of smoothed sections). LetM be a closed
simplicial complex with n ∈ N vertices with a discrete hermitian line bundle
L with a discrete curvature Ω and t ≥ 0. Let 4 be the triangle spanned by
neighboring vertices i, j, k ∈M and f be the Kodaira correspondence
Let ωt4 be a smooth function of t > 0 such that

ωt4 = arg(〈〈Stδi, Stδj〉〉C〈〈Stδj , Stδk〉〉C〈〈Stδk, Stδi〉〉C) mod 2π

and ω0
4 = 2

(
Ωijk − round

(Ωijk

π

)
π

)
.

Then the average number of signed zeros of random sections smoothed by St on
4 ijk is

Îijk(Stf) = 1
4πω

t
4 + 1

2round
(Ωijk

π

)
The area density is

Ẑijk(Stf) = Îijk(Stf)
Area(ijk)

6.2. Results and Visualisation

Now that we have managed to establish a way to computing the density of indices
of random sections of discrete hermitian line bundles on simplicial complexes we
can finally briefly discuss the outcome. We will not even try to apply the discrete
approach from chapter (4) as we did not manage to simplfy the integral expression
(4.1). Instead we will focus only on the final expression as in theorem (28).

Lets define for neighboring vertices ijk of a closed simplicial complex M with n ∈ N
verticies in total:

Pijk(t) :=
1

4πω
t
4 + 1

2round
(Ωijk

π

)
Area(ijk)

Lets visually inspect the results inside jReality3, a visualisation software created
inside the Technical University of Berlin. The code written simply computes Pijk(t)
on each surface for a fixed t ≥ 0 and colorized the minimal value blue, the maximal
value red, and all the values in between with a rainbow color gradient.

The base of the program was written by Felix Knöppel in pursuit of the the
original hunch of the non-trivial distribution of zeros as noticed in the Global Optimal
Direction Field paper[KCPS13]. In Felix’s code smoothed sample sections where
counted through as seen in figure (6.1). The size of the points determine the quantity
and the color the value of the of the index sum.

3http://www3.math.tu-berlin.de/jreality/
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6.2. Results and Visualisation

Figure 6.1.: 1000 smoothed sample sections and their accumulated indices counted on
each face of the closed schwarz patch surface

To ease the computation of Pijk(t) we use theorem (8) to justify that eigenvectors
to higher eigenvalues become more irrelevant with increasing t and are therefore
excluded from the computation. In other words, we choose 1 ≤ k ≤ n ∈ N and for
any section φ ∈ Γ(L) we project it orthogonally onto span(ϕ1, ..., ϕk) using πk where
ϕi are the eigenvectors of St and ∆ ordered by the size of their respective eigenvalues.
In a nutshell we cut off eigenvectors of higher eigenvalues:

φ =
n∑
i=1

µiϕi ⇒ πk(φ) =
k∑
i=1

µiϕi

This allows faster computations of ωt4 with similar precision. For grater values of t
we can decrease the value of k as long as k ≥ dim(Eig(λ1)) so that the smoothing
convergence determines that the same limit will be met. In formal words:

if k ≥ dim(Eig(λ1))⇒ lim
t→∞

[Stφ] = lim
t→∞

[St ◦ πk(φ)]

This becomes evident when observing the prove of theorem (8) in section (3.2).
Let us observe the effects on an ellipse in figure (6.2) from a slightly tilted view.

Above the geometry we see its Pijk(t) value histogram distribution from its minimum
to its maximum. In the first picture we still see the effects caused by cutting down φ to
πk(φ) as t = 0. With increasing t the positive zeros become more likely at the pointy
ends of the ellipsoid while most of the surface has index zero. By Poincare-Hopf,
the index sum of an ellipse is equal to χ( ellipse ) = 2, which lets us guess that the
ellipsoid will acquire only one positive zeros at each of the pointiest tips. This figure
was loaded from a random simplicial simplex in the shape of an ellipsoid, meaning
that we had to compute Ω ourselfs and thus have Ωijk ∈ (−π, π).
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6. Solution and Discussion

Figure 6.2.: ellipse with 10k vertices. From left to right, top to bottom the value of t
was increased starting at 0.
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